Review

Trusted emotion recognition based on multiple signals captured from video and its application in intelligent education

  • Received: 07 February 2024 Revised: 19 March 2024 Accepted: 15 May 2024 Published: 29 May 2024
  • The emotional variation can reflect shifts in mental and emotional states. It plays an important role in the field of intelligent education. Emotion recognition can be used as cues for teachers to evaluate the learning state, analyze learning motivation, interest, and efficiency. Although research on emotion recognition has been ongoing for a long time, there has been a restricted emphasis on analyzing the credibility of the recognized emotions. In this paper, the origin, development, and application of emotion recognition were introduced. Then, multiple signals captured from video that could reflect emotion changes were described in detail and their advantages and disadvantages were discussed. Moreover, a comprehensive summary of the pertinent applications and research endeavors of emotion recognition technology in the field of education was provided. Last, the trend of emotion recognition in the field of education was given.

    Citation: Junjie Zhang, Cheng Fei, Yaqian Zheng, Kun Zheng, Mazhar Sarah, Yu Li. Trusted emotion recognition based on multiple signals captured from video and its application in intelligent education[J]. Electronic Research Archive, 2024, 32(5): 3477-3521. doi: 10.3934/era.2024161

    Related Papers:

  • The emotional variation can reflect shifts in mental and emotional states. It plays an important role in the field of intelligent education. Emotion recognition can be used as cues for teachers to evaluate the learning state, analyze learning motivation, interest, and efficiency. Although research on emotion recognition has been ongoing for a long time, there has been a restricted emphasis on analyzing the credibility of the recognized emotions. In this paper, the origin, development, and application of emotion recognition were introduced. Then, multiple signals captured from video that could reflect emotion changes were described in detail and their advantages and disadvantages were discussed. Moreover, a comprehensive summary of the pertinent applications and research endeavors of emotion recognition technology in the field of education was provided. Last, the trend of emotion recognition in the field of education was given.



    加载中


    [1] Q. Hu, L. Liu, N. Ding, The dilemma and solution of online education in the perspective of educational equity, China Educ. Technol., 8 (2020), 14−21. https://doi.org/10.3969/j.issn.1006-9860.2020.08.003 doi: 10.3969/j.issn.1006-9860.2020.08.003
    [2] M. Balaam, G. Fitzpatrick, J. Good, R. Luckin, Exploring affective technologies for the classroom with the subtle stone, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (2010), 1623−1632. https://doi.org/10.1145/1753326.1753568
    [3] A. Hutanu, P. E. Bertea, A review of eye tracking in elearning, in Proceedings of the 15th International Scientific Conference eLearning and Software for Education, (2019), 281−287. https://doi.org/10.12753/2066-026X-21-038
    [4] Y. Wang, Q. Wu, S. Wang, X. Q. Fang, Q. Ruan, MI-EEG: Generalized model based on mutual information for EEG emotion recognition without adversarial training, Expert Syst. Appl., 244 (2024), 122777. https://doi.org/10.1016/j.eswa.2023.122777 doi: 10.1016/j.eswa.2023.122777
    [5] T. Fan, S. Qiu, Z. Wang, H. Zhao, J. Jiang, Y. Wang, et al., A new deep convolutional neural network incorporating attentional mechanisms for ECG emotion recognition, Comput. Biol. Med., 159 (2023), 106938. https://doi.org/10.1016/j.compbiomed.2023.106938 doi: 10.1016/j.compbiomed.2023.106938
    [6] Q. Xu, W. Sommer, G. Recio, Control over emotional facial expressions: Evidence from facial EMG and ERPs in a Stroop-like task, Biol. Psychol., 181 (2023), 108611. https://doi.org/10.1016/j.biopsycho.2023.108611 doi: 10.1016/j.biopsycho.2023.108611
    [7] J. J. Zhang, G. M. Sun, K. Zheng, S. Mazhar, X. H. Fu, Y. Li, et al., SSGNN: A macro and microfacial expression recognition graph neural network combining spatial and spectral domain features, IEEE Trans. Human-Mach. Syst., 52 (2022), 747−760. https://doi.org/10.1109/THMS.2022.3163211 doi: 10.1109/THMS.2022.3163211
    [8] J. Zhang, K. Zheng, S. Mazhar, X. Fu, J. Kong, Trusted emotion recognition based on multiple signals captured from video, Expert Syst. Appl., 233 (2023), 120948. https://doi.org/10.1016/j.eswa.2023.120948 doi: 10.1016/j.eswa.2023.120948
    [9] J. Zhang, G. Sun, K. Zheng, Review of gaze tracking and its application in intelligent education, J. Comput. Appl., 40 (2020), 3346. https://doi.org/10.11772/j.issn.1001-9081.2020040443 doi: 10.11772/j.issn.1001-9081.2020040443
    [10] P. Van Cappellen, M. E. Edwards, M. N. Shiota, Shades of expansiveness: Postural expression of dominance, high-arousal positive affect, and warmth, Emotion, 23 (2023), 973−985. https://doi.org/10.1037/emo0001146 doi: 10.1037/emo0001146
    [11] Z. Yu, X. Li, G. Zhao, Facial-video-based physiological signal measurement: Recent advances and affective applications, IEEE Signal Process. Mag., 38 (2021), 50−58. https://doi.org/10.1109/MSP.2021.3106285 doi: 10.1109/MSP.2021.3106285
    [12] R. W. Picard, Affective Computing, MIT Press, (2000), https://doi.org/10.7551/mitpress/1140.001.0001
    [13] J. J. Wang, Y. H. Gong, Recognition of multiple drivers' emotional state, in Proceedings of the 19th International Conference on Pattern Recognition, (2008), 1−4. https://doi.org/10.1109/icpr.2008.4761904
    [14] F. Ungureanu, R. G. Lupu, A. Cadar, A. Prodan, Neuromarketing and visual attention study using eye tracking techniques, in Proceedings of the 21st International Conference on System Theory, Control and Computing, (2017), 553−557. https://doi.org/10.1109/icstcc.2017.8107093
    [15] M. Uljarevic, A. Hamilton, Recognition of emotions in autism: A formal meta-analysis, Journal of Autism and Developmental Disorders, 43 (2013), 1517−1526. https://doi.org/10.1007/s10803-012-1695-5 doi: 10.1007/s10803-012-1695-5
    [16] I. Lopatovska, Searching for good mood: examining relationships between search task and mood, ASIS & T, 46 (2009), 1−13. https://doi.org/10.1002/meet.2009.1450460222 doi: 10.1002/meet.2009.1450460222
    [17] P. Sarkar, A. Etemad, Self-supervised ECG representation learning for emotion recognition, IEEE Trans. Affect. Comput., 13 (2022), 1541−1554. https://doi.org/10.1109/taffc.2020.3014842 doi: 10.1109/taffc.2020.3014842
    [18] P. Pandey, K. R. Seeja, Subject independent emotion recognition from EEG using VMD and deep learning, J. King Saud. Univ. Comput. Inf. Sci., 34 (2022), 1730−1738. https://doi.org/10.1016/j.jksuci.2019.11.003 doi: 10.1016/j.jksuci.2019.11.003
    [19] G. Giannakakis, D. Grigoriadis, K. Giannakaki, O. Simantiraki, A. Roniotis, M. Tsiknakis, Review on psychological stress detection using biosignals, IEEE Trans. Affective Comput., 13 (2019), 440−460. https://doi.org/10.1109/taffc.2019.2927337 doi: 10.1109/taffc.2019.2927337
    [20] D. J. Diaz-Romero, A. M. R. Rincon, A. Miguel-Cruz, N. Yee, E. Stroulia, Recognizing emotional states with wearables while playing a serious game, IEEE Trans. Instrum. Meas., 70 (2021), 1−12. https://doi.org/10.1109/tim.2021.3059467 doi: 10.1109/tim.2021.3059467
    [21] S. Zhang, X. Zhao, Q. Tian, Spontaneous speech emotion recognition using multiscale deep convolutional LSTM, IEEE Trans. Affective Comput., 13 (2019), 680−688. https://doi.org/10.1109/taffc.2019.2947464 doi: 10.1109/taffc.2019.2947464
    [22] S. Peng, R. Zeng, H. Liu, L. Cao, G. Wang, J. Xie, Deep broad learning for emotion classification in textual conversations, Tsinghua Sci. Technol., 29 (2024), 481−491. https://doi.org/10.26599/tst.2023.9010021 doi: 10.26599/tst.2023.9010021
    [23] A. Kleinsmith, N. Bianchi-Berthouze, Affective body expression perception and recognition: A survey, IEEE Trans. Affective Comput., 4 (2013), 15−33. https://doi.org/10.1109/t-affc.2012.16 doi: 10.1109/t-affc.2012.16
    [24] M. Jeong, B. C. Ko, Driver's facial expression recognition in real-time for safe driving, Sensors (Basel), 18 (2018), 4270. https://doi.org/10.3390/s18124270 doi: 10.3390/s18124270
    [25] A. K. Davison, C. Lansley, N. Costen, K. Tan, M. H. Yap, SAMM: A spontaneous micro-facial movement dataset, IEEE Trans. Affective Comput., 9 (2018), 116−129. https://doi.org/10.1109/taffc.2016.2573832 doi: 10.1109/taffc.2016.2573832
    [26] C. Cao, Y. Weng, S. Zhou, Y. Tong, K. Zhou, FaceWarehouse: A 3D facial expression database for visual computing, IEEE Trans. Visual. Comput. Graph., 20 (2014), 413−425. https://doi.org/10.1109/tvcg.2013.249 doi: 10.1109/tvcg.2013.249
    [27] O. Langner, R. Dotsch, G. Bijlstra, D. H. Wigboldus, S. T. Hawk, A. D. Van Knippenberg, Presentation and validation of the radboud faces database, Cognit. Emotion, 24 (2010), 1377-1388. https://doi.org/10.1080/02699930903485076 doi: 10.1080/02699930903485076
    [28] M. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with gabor wavelets, in Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, (1998), 200−205. https://doi.org/10.1109/afgr.1998.670949
    [29] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, The extended cohn-kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, (2010), 94−101. https://doi.org/10.1109/cvprw.2010.5543262
    [30] G. Zhao, X. Huang, M. Taini, S. Z. Li, M. Pietikalnen, Facial expression recognition from near-infrared videos, Image Vision Comput., 29 (2011), 607−619. https://doi.org/10.1016/j.imavis.2011.07.002 doi: 10.1016/j.imavis.2011.07.002
    [31] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville, M. Mirza, B. Hamner, et al., Challenges in representation learning: A report on three machine learning contests, Neural Networks, 65 (2015), 59−63. https://doi.org/10.1016/j.neunet.2014.09.005 doi: 10.1016/j.neunet.2014.09.005
    [32] A. Mollahosseini, B. Hasani, M. H. Mahoor, Affectnet: A database for facial expression, valence, and arousal computing in the wild, IEEE Trans. Affect. Comput., 10 (2017), 18−31. https://doi.org/10.1109/taffc.2017.2740923 doi: 10.1109/taffc.2017.2740923
    [33] S. Li, W. Deng, Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition, IEEE Trans. Image Process., 28 (2018), 356−370. https://doi.org/10.1109/tip.2018.2868382 doi: 10.1109/tip.2018.2868382
    [34] C. F. Benitez-Quiroz, R. Srinivasan, A. M. Martinez, EmotioNet: An accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild, in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, (2016), 5562−5570. https://doi.org/10.1109/cvpr.2016.600
    [35] P. Ekman, W. V. Friesen, Measuring facial movement, J. Nonverbal. Behav., 1 (1976), 56−75. https://doi.org/10.1007/BF01115465 doi: 10.1007/BF01115465
    [36] Y. Fang, J. Luo, C. Lou, Fusion of multi-directional rotation invariant uniform LBP features for face recognition, in 2009 Third International Symposium on Intelligent Information Technology Application, (2009), 332−335. https://doi.org/10.1109/iita.2009.206
    [37] T. Zhang, W. Zheng, Z. Cui, Y. Zong, J. Yan, K. Yan, A deep neural network-driven feature learning method for multi-view facial expression recognition, IEEE Trans. Multimedia, 18 (2016), 2528−2536. https://doi.org/10.1109/TMM.2016.2598092 doi: 10.1109/TMM.2016.2598092
    [38] P. Kumar, S. L. Happy, A. Routray, A real-time robust facial expression recognition system using HOG features, in 2016 International Conference on Computing, Analytics and Security Trends (CAST), (2016), 289−293. https://doi.org/10.1109/CAST.2016.7914982
    [39] N. Zeng, H. Zhang, B. Song, W. Liu, Y. Li, A. M. Dobaie, Facial expression recognition via learning deep sparse autoencoders, Neurocomputing, 273 (2018), 643−649. https://doi.org/10.1016/j.neucom.2017.08.043 doi: 10.1016/j.neucom.2017.08.043
    [40] X. Jian, D. X. Qing, W. S. Jin, W. Y. Shou, Background subtraction based on a combination of texture, color and intensity, in Proceedings of the 9th International Conference on Signal Processing, (2008), 1400−1405. https://doi.org/10.3724/sp.j.1004.2009.01145
    [41] S. Shojaeilangari, W. Y. Yau, K. Nandakumar, J. Li, E. K. Teoh, Robust representation and recognition of facial emotions using extreme sparse learning, IEEE Trans. Image Process, 24 (2015), 2140−2152. https://doi.org/10.1109/TIP.2015.2416634 doi: 10.1109/TIP.2015.2416634
    [42] Y. D. Chen, X. Yang, T. J. Cham, J. F. Cai, Towards unbiased visual emotion recognition via causal intervention, in Proceedings of the 30th ACM International Conference on Multimedia, (2022), 60−69. https://doi.org/10.1145/3503161.3547936
    [43] L. Wang, G. Jia, N. Jiang, H. Wu, J. Yang, EASE: Robust facial expression recognition via emotion ambiguity-sensitive cooperative networks, in Proceedings of the 30th ACM International Conference on Multimedia, (2022), 218−227. https://doi.org/10.1145/3503161.3548005
    [44] P. Barros, E. Barakova, S. Wermter, Adapting the interplay between personalized and generalized affect recognition based on an unsupervised neural framework, IEEE Trans. Affect. Comput., 13 (2022), 1349−1365. https://doi.org/10.1109/TAFFC.2020.3002657 doi: 10.1109/TAFFC.2020.3002657
    [45] K. Zheng, L. Tian, Z. Li, H. Li, J. Zhang, Incorporating eyebrow and eye state information for facial expression recognition in mask-obscured scenes, Electron. Res. Arch., 32 (2024), 2745−2771. https://doi.org/10.3934/era.2024124 doi: 10.3934/era.2024124
    [46] A. S. Cowen, D. Keltner, F. Schroff, B. Jou, H. Adam, G. Prasad, Sixteen facial expressions occur in similar contexts worldwide, Nature, 589 (2021), 251−257. https://doi.org/10.1038/s41586-020-3037-7 doi: 10.1038/s41586-020-3037-7
    [47] K. Zheng, D. Yang, J. Liu, Recognition of teachers' facial expression intensity based on convolutional neural network and attention mechanism, IEEE Access, 8 (2020), 226437−226444. https://doi.org/10.1109/access.2020.3046225 doi: 10.1109/access.2020.3046225
    [48] J. J. Zhang, G. M. Sun, K. Zheng, S. Mazhar, X. H. Fu, D. Yang, Emotion recognition based on graph neural networks, in Proceedings of the International Conference on Cognitive Systems and Signal Processing ICCSIP 2020: Cognitive Systems and Signal Processing, (2021), 472−480. https://doi.org/10.1007/978-981-16-2336-3_45
    [49] W. J. Yan, Q. Wu, Y. J. Liu, S. J. Wang, X. Fu, CASME database: a dataset of spontaneous micro-expressions collected from neutralized faces, in Proceedings of the 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, (2013), 1−7. https://doi.org/10.1109/fg.2013.6553799
    [50] W. J. Yan, X. Li, S. J. Wang, G. Zhao, Y. J. Liu, Y. H. Chen, X. Fu, CASME Ⅱ: An improved spontaneous micro-expression database and the baseline evaluation, PLoS One, 9 (2014), e86041. https://doi.org/10.1371/journal.pone.0086041 doi: 10.1371/journal.pone.0086041
    [51] J. Li, Z. Dong, S. Lu, S. J. Wang, W. J. Yan, Y. Ma, et al., CAS(ME).3: A third generation facial spontaneous micro-expression database with depth information and high ecological validity, IEEE Trans. Pattern Anal. Mach. Intell., 45 (2023), 2782−2800. https://doi.org/10.1109/tpami.2022.3174895 doi: 10.1109/tpami.2022.3174895
    [52] C. H. Yap, C. Kendrick, M. H. Yap, SAMM Long Videos: A spontaneous facial micro- and macro-expressions dataset, in Proceedings of the 15th IEEE International Conference on Automatic Face and Gesture Recognition, (2020), 771−776. https://doi.org/10.1109/fg47880.2020.00029
    [53] P. Husak, J. Cech, J. Matas, Spotting facial micro-expressions in the wild, in Proceedings of the 22nd Computer Vision Winter Workshop, (2017). https://api.semanticscholar.org/CorpusID: 21669949
    [54] G. Warren, E. Schertler, P. Bull, Detecting deception from emotional and unemotional cues, J. Nonverbal Behav., 33 (2009), 59−69. https://doi.org/10.1007/s10919-008-0057-7 doi: 10.1007/s10919-008-0057-7
    [55] M. Shreve, S. Godavarthy, D. Goldgof, S. Sarkar, Macro-and micro-expression spotting in long videos using spatio-temporal strain, in Proceedings of the 2011 IEEE International Conference on Automatic Face and Gesture Recognition, (2011), 51−56. https://doi.org/10.1109/fg.2011.5771451
    [56] S. Polikovsky, Y. Kameda, Y. Ohta, Facial micro-expressions recognition using high speed camera and 3D-gradient descriptor, in Proceedings of the 3rd International Conference on Image for Crime Detection and Prevention, (2009), 16−21. https://doi.org/10.1049/ic.2009.0244
    [57] X. Ben, Y. Ren, J. Zhang, S. J. Wang, K. Kpalma, W. Meng, et al., Video-based facial micro-expression analysis: A survey of datasets, features and algorithms, IEEE Trans. Pattern Anal., 44 (2022), 5826−5846. https://doi.org/10.1109/tpami.2021.3067464 doi: 10.1109/tpami.2021.3067464
    [58] M. Peng, C. Wang, T. Chen, G. Liu, X. Fu, Dual temporal scale convolutional neural network for micro-expression recognition, Front. Psychol., 8 (2017), 1745. https://doi.org/10.3389/fpsyg.2017.01745 doi: 10.3389/fpsyg.2017.01745
    [59] D. H. Kim, W. J. Baddar, J. Jang, Y. M. Ro, Multi-objective based spatio-temporal feature representation learning robust to expression intensity variations for facial expression recognition, IEEE Trans. Affect. Comput., 10 (2017), 223−236. https://doi.org/10.1109/taffc.2017.2695999 doi: 10.1109/taffc.2017.2695999
    [60] M. Verma, S. K. Vipparthi, G. Singh, S. Murala, LEARNet: Dynamic imaging network for micro expression recognition, IEEE Trans. Image Process., 29 (2019), 1618−1627. https://doi.org/10.1109/tip.2019.2912358 doi: 10.1109/tip.2019.2912358
    [61] B. Song, K. Li, Y. Zong, J. Zhu, W. Zheng, J. Shi, et al., Recognizing spontaneous micro-expression using a three-stream convolutional neural network, IEEE Access, 7 (2019), 184537−184551. https://doi.org/10.1109/access.2019.2960629 doi: 10.1109/access.2019.2960629
    [62] Z. Xia, X. Hong, X. Gao, X. Feng, G. Zhao, Spatiotemporal recurrent convolutional networks for recognizing spontaneous micro-expressions, IEEE Trans. Multimedia, 22 (2019), 626−640. https://doi.org/10.1109/tmm.2019.2931351 doi: 10.1109/tmm.2019.2931351
    [63] M. Peng, Z. Wu, Z. Zhang, T. Chen, From macro to micro expression recognition: Deep learning on small datasets using transfer learning, in 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), (2018), 657−661. https://doi.org/10.1109/fg.2018.00103
    [64] L. Ma, T. Tan, Y. Wang, D. Zhang, Efficient iris recognition by characterizing key local variations, IEEE Trans. Image Process., 13 (2004), 739−750. https://doi.org/10.1109/tip.2004.827237 doi: 10.1109/tip.2004.827237
    [65] Z. N. Sun, T. N. Tan, Ordinal measures for iris recognition, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009), 2211−2226. https://doi.org/10.1109/tpami.2008.240 doi: 10.1109/tpami.2008.240
    [66] Z. F. He, T. N. Tan, Z. N. Sun, X. Qiu, Towards accurate and fast iris segmentation for iris biometrics, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009), 1670−1684. https://doi.org/10.1109/tpami.2008.183 doi: 10.1109/tpami.2008.183
    [67] T. N. Tan, Z. F. He, Z. N. Sun, Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition, Image Vision Comput., 28 (2010), 223−230. https://doi.org/10.1016/j.imavis.2009.05.008 doi: 10.1016/j.imavis.2009.05.008
    [68] P. J. Phillips, K. W. Bowyer, P. J. Flynn, X. Liu, W. T. Scruggs, The iris challenge evaluation 2005, in Proceedings of the 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems, (2008), 1−8. https://doi.org/10.1109/btas.2008.4699333
    [69] S. Shah, A. Ross, Generating synthetic irises by feature agglomeration, in Proceedings of the IEEE International Conference on Image Processing, (2006), 317−320. https://doi.org/10.1109/icip.2006.313157
    [70] M. Tonsen, X. C. Zhang, Y. Sugano, A. Bulling, Labelled pupils in the wild: A dataset for studying pupil detection in unconstrained environments, in Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research and Applications, (2016), 139−142. https://doi.org/10.1145/2857491.2857520
    [71] M. Dobes, J. Martinek, D. Skoupil, Z. Dobesova, J. Pospisil, Human eye localization using the modified Hough transform, Optik, 117 (2006), 468−473. https://doi.org/10.1016/j.ijleo.2005.11.008 doi: 10.1016/j.ijleo.2005.11.008
    [72] H. Proenca, L. A. Alexandre, UBIRIS: A noisy iris image database, in Proceedings of the 13 International Conference on Image Analysis and Processing, (2005), 970−977. https://doi.org/10.1007/11553595_119
    [73] H. Proenca, S. Filipe, R. Santos, J. Oliveira, L. A. Alexandre, The UBIRIS.v2: A database of visible wavelength iris images captured on-the-move and at-a-distance, Trans. Pattern Anal. Mach. Intell., 32 (2009), 1529−1535. https://doi.org/10.1109/tpami.2009.66 doi: 10.1109/tpami.2009.66
    [74] W. Fuhl, G. Kasneci, E. Kasneci, TEyeD: Over 20 million real-world eye image with pupil, Eyelid, and Iris 2D and 3D segmentations, 2D and 3D landmarks, 3D eyeball, gaze vector, and eye movement types, in Proceedings of the 2021 IEEE International Symposium on Mixed and Augmented Reality, (2021), 367−375. https://doi.org/10.1109/ismar52148.2021.00053
    [75] G. Sun, J. Zhang, K. Zheng, X. Fu, Eye tracking and roi detection within a computer screen using a monocular camera, J. Web Eng., (2020), 1117−1146. https://doi.org/10.13052/jwe1540-9589.19789 doi: 10.13052/jwe1540-9589.19789
    [76] G. Heusch, A. Anjos, S. Marcel, A reproducible study on remote heart rate measurement, preprint, arXiv: 1709.00962.
    [77] G. G. Hsu, A. Ambikapathi, M. S. Chen, Deep learning with time-frequency representation for pulse estimation from facial videos, in Proceedings of the 2017 IEEE International Joint Conference on Biometrics, (2017), 383−389. https://doi.org/10.1109/btas.2017.8272721
    [78] R. Stricker, S. Muller, H. M. Gross, Non-contact video-based pulse rate measurement on a mobile service robot, in Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication, (2014), 1056−1062. https://doi.org/10.1109/roman.2014.6926392
    [79] S. Bobbia, R. Macwan, Y. Benezeth, A. Mansouri, J. Dubois, Unsupervised skin tissue segmentation for remote photoplethysmography, Pattern Recogn. Lett., 124 (2019), 82−90. https://doi.org/10.1016/j.patrec.2017.10.017 doi: 10.1016/j.patrec.2017.10.017
    [80] X. Niu, H. Han, S. Shan, X. Chen, VIPL-HR: A multi-modal database for pulse estimation from less-constrained face video, in Proceedings of the Asian Conference on Computer Vision, (2018), 562−576. https://doi.org/10.1007/978-3-030-20873-8_36
    [81] X. Li, H. Han, H. Lu, X. Niu, Z. Yu, A. Dantcheva, et al., The 1st challenge on remote physiological signal sensing, in Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), (2020), 1274−1281. https://doi.org/10.1109/cvprw50498.2020.00165
    [82] Z. Zhang, J. M. Girard, Y. Wu, X. Zhang, P. Liu, U. Ciftci, et al., Multimodal spontaneous emotion corpus for human behavior analysis, in Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, (2016), 3438−3446. https://doi.org/10.1109/CVPR.2016.374
    [83] E. M. Nowara, T. K. Marks, H. Mansour, A. Veeraraghavan, Near-infrared imaging photoplethysmography during driving, IEEE Trans. Intell. Trans. Syst., 23 (2022), 3589−3600. https://doi.org/10.1109/tits.2020.3038317 doi: 10.1109/tits.2020.3038317
    [84] E. M. Nowara, T. K. Marks, H. Mansour, SparsePPG: Towards driver monitoring using camera-based vital signs estimation in near-infrared, in Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, (2018), 1353−1362. https://doi.org/10.1109/cvprw.2018.00174
    [85] X. Li, I. Alikhani, J. Shi, T. Seppanen, J. Junttila, K. Majamaa-Voltti, et al., The OBF database: A large face video database for remote physiological signal measurement and atrial fibrillation detection, in Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition, (2018), 242−249. https://doi.org/10.1109/fg.2018.00043
    [86] Y. C. Chou, B. Y. Ye, H. R. Chen, Y. H. Lin, A real-time and non-contact pulse rate measurement system on fitness equipment, IEEE Trans. Instrum. Meas., 71 (2021), 1−11. https://doi.org/10.1109/TIM.2021.3136173 doi: 10.1109/TIM.2021.3136173
    [87] Q. V. Tran, S. F. Su, W. Sun, M. Q. Tran, Adaptive pulsatile plane for robust noncontact heart rate monitoring, IEEE Trans. Syst. Man Cybern., 51 (2021), 5587−5599. https://doi.org/10.1109/TSMC.2019.2957159 doi: 10.1109/TSMC.2019.2957159
    [88] R. Belaiche, R. M. Sabour, C. Migniot, Y. Benezeth, D. Ginhac, K. Nakamura, et al., Emotional state recognition with micro-expressions and pulse rate variability, in Proceedings of the 20th International Conference on Image Analysis and Processing, (2019), 26−35. https://doi.org/10.1007/978-3-030-30642-7_3
    [89] R. M. Sabour, Y. Benezeth, F. Marzani, K. Nakamura, R. Gomez, F. Yang, Emotional state classification using pulse rate variability, in Proceedings of the 4th International Conference on Signal and Image Processing, (2019), 86−90. https://doi.org/10.1109/siprocess.2019.8868781
    [90] F. Bevilacqua, H. Engstrom, P. Backlund, Game-calibrated and user-tailored remote detection of stress and boredom in games, Sensors-Basel, 19 (2019), 2877. https://doi.org/10.3390/s19132877 doi: 10.3390/s19132877
    [91] K. Zheng, K. Ci, H. Li, L. Shao, G. Sun, J. Liu, et al., Heart rate prediction from facial video with masks using eye location and corrected by convolutional neural networks, Biomed. Signal Process., 75 (2022), 103609. https://doi.org/10.1016/j.bspc.2022.103609 doi: 10.1016/j.bspc.2022.103609
    [92] K. Zheng, K. Ci, J. Cui, J. Hong, J. Zhou, Non-contact heart rate detection when face information is missing during online learning, Sensors-Basel, 20 (2020), 7021. https://doi.org/10.3390/s20247021 doi: 10.3390/s20247021
    [93] K. Zheng, J. J. Shen, G. M. Sun, H. Li, Y. Li, Shielding facial physiological information in video, Math. Biosci. Eng., 19 (2022), 5153−5168. https://doi.org/10.3934/mbe.2022241 doi: 10.3934/mbe.2022241
    [94] S. K. A. Prakash, C. S. Tucker, Bounded Kalman filter method for motion-robust, non-contact heart rate estimation, Biomed. Opt. Express, 9 (2018), 873−897. https://doi.org/10.1364/boe.9.000873 doi: 10.1364/boe.9.000873
    [95] Y. Qiu, Y. Liu, J. Arteaga-Falconi, H. Dong, A. El Saddik, EVM-CNN: Real-time contactless heart rate estimation from facial video, IEEE Trans. Multimedia, 21 (2018), 1778−1787. https://doi.org/10.1109/tmm.2018.2883866 doi: 10.1109/tmm.2018.2883866
    [96] W. J. Han, H. F. Li, H. B. Ruan, L. Ma, Review on speech emotion recognition, J. Software, 25 (2014), 37−50. https://doi.org/10.13328/j.cnki.jos.004497 doi: 10.13328/j.cnki.jos.004497
    [97] S. R. Livingstone, F. A. Russo, The ryerson audio-visual database of emotional speech and song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in north American English, PLoS One, 13 (2018), e0196391, https://doi.org/10.1371/journal.pone.0196391 doi: 10.1371/journal.pone.0196391
    [98] Y. Wang, L. Guan, Recognizing human emotional state from audiovisual signals, IEEE Trans. Multimedia, 10 (2008), 659−668. https://doi.org/10.1109/tmm.2008.927665 doi: 10.1109/tmm.2008.927665
    [99] S. Zhalehpour, O. Onder, Z. Akhtar, C. E. Erdem, BAUM-1: A spontaneous audio-visual face database of affective and mental states, IEEE Trans. Affect. Comput., 8 (2017), 300−313. https://doi.org/10.1109/taffc.2016.2553038 doi: 10.1109/taffc.2016.2553038
    [100] C. Busso, M. Bulut, C. C. Lee, A. Kazemzadeh, E. Mower, S. Kim, et al., IEMOCAP: Interactive emotional dyadic motion capture database, Lang. Resour. Eval., 42 (2008), 335−359. https://doi.org/10.1007/s10579-008-9076-6 doi: 10.1007/s10579-008-9076-6
    [101] A. Metallinou, Z. Yang, C. C. Lee, C. Busso, S. Carnicke, S. Narayanan, The USC CreativeIT database of multimodal dyadic interactions: from speech and full body motion capture to continuous emotional annotations, Lang. Resour. Eval., 50 (2016), 497−521. https://doi.org/10.1007/s10579-015-9300-0 doi: 10.1007/s10579-015-9300-0
    [102] M. Grimm, K. Kroscher, S. Narayanan, The Vera am Mittag German audio-visual emotional speech database, in Proceedings of 2008 IEEE International Conference on Multimedia and Expo, (2008), 865−868. https://doi.org/10.1109/icme.2008.4607572
    [103] G. Mckown, M. Valstar, R. Cowie, M. Pantic, M. Schroder, The SEMAINE database: Annotated multimodal records of emotionally colored conversations between a person and a limited agent, IEEE Trans. Affect. Comput., 3 (2012), 5−17. https://doi.org/10.1109/t-affc.2011.20 doi: 10.1109/t-affc.2011.20
    [104] F. Ringeval, A. Sonderegger, J. Sauer, D. Lalanne, Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions, in Proceedings of the 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, (2013), 1−8. https://doi.org/10.1109/fg.2013.6553805
    [105] V. V. Nanavare, S. K. Jagtap, Recognition of human emotions from speech processing, Procedia Comput. Sci., 49 (2015), 24−32. https://doi.org/10.1016/j.procs.2015.04.223 doi: 10.1016/j.procs.2015.04.223
    [106] P. Vasuki, C. Aravindan, Improving emotion recognition from speech using sensor fusion techniques, in Proceedings of TENCON 2012 IEEE Region 10 Conference, (2012), 1−6. https://doi.org/10.1109/tencon.2012.6412330
    [107] X. L. Zhao, Q. R. Mao, Y. Z. Zhan, New method of speech emotion recognition fusing functional paralanguages, J. Front. Comput. Sci. Technol., 8 (2014), 186−199. https://doi.org/10.3778/j.issn.1673-9418.1309002 doi: 10.3778/j.issn.1673-9418.1309002
    [108] J. H. Hsu, M. H. Su, C. H. Wu, Y. H. Chen, Speech emotion recognition considering nonverbal vocalization in affective conversations, IEEE-ACM Trans. Audio Speech Lang. Process., 29 (2021), 1675−1686. https://doi.org/10.1109/taslp.2021.3076364 doi: 10.1109/taslp.2021.3076364
    [109] S. Zhang, S. Zhang, T. Huang, W. Gao, Speech emotion recognition using deep convolutional neural network and discriminant temporal pyramid matching, IEEE Trans. Multimedia, 20 (2017), 1576−1590. https://doi.org/10.1109/tmm.2017.2766843 doi: 10.1109/tmm.2017.2766843
    [110] Z. M. Wang, G. Liu, H. Song, Speech emotion recognition method based on multiple kernel learning feature fusion, Comput. Eng., 45 (2019), 248−254. https://doi.org/10.19678/j.issn.1000-3428.0053232 doi: 10.19678/j.issn.1000-3428.0053232
    [111] J. Wang, M. Xue, R. Culhane, E. Diao, J. Ding, V. Tarokh, Speech emotion recognition with dual-sequence LSTM architecture, in IEEE International Conference on Acoustics, Speech and Signal Processing, (2020), 6474−6478. https://doi.org/10.1109/icassp40776.2020.9054629
    [112] J. Zhao, X. Mao, L. Chen, Speech emotion recognition using deep 1D & 2D CNN LSTM networks, Biomed. Signal Process., 47 (2019), 312−323. https://doi.org/10.1016/j.bspc.2018.08.035 doi: 10.1016/j.bspc.2018.08.035
    [113] O. Atila, A. Sengur, Attention guided 3D CNN-LSTM model for accurate speech based emotion recognition, Appl. Acoust., 182 (2021), 108260. https://doi.org/10.1016/j.apacoust.2021.108260 doi: 10.1016/j.apacoust.2021.108260
    [114] X. Wu, Y. Cao, H. Lu, S. Liu, D. Wang, Z. Wu, et al., Speech emotion recognition using sequential capsule networks, IEEE-ACM Trans. Audio Speech Lang. Process., 29 (2021), 3280−3291. https://doi.org/10.1109/taslp.2021.3120586 doi: 10.1109/taslp.2021.3120586
    [115] I. Shahin, N. Hindawi, A. B. Nassif, A. Alhudhaif, K. Polat, Novel dual-channel long short-term memory compressed capsule networks for emotion recognition, Expert Syst. Appl., 188 (2022), 116080. https://doi.org/10.1016/j.eswa.2021.116080 doi: 10.1016/j.eswa.2021.116080
    [116] S. Zhang, R. Liu, Y. Yang, X. Zhao, J. Yu, Unsupervised domain adaptation integrating transformer and mutual information for cross-corpus speech emotion recognition, in Proceedings of the 30th ACM International Conference on Multimedia, (2022), 120−129. https://doi.org/10.1145/3503161.3548328
    [117] D. Jing, T. Manting, Z. Li, Transformer-like model with linear attention for speech emotion recognition, J. Southeast Univ. (Engl. Ed.), 37 (2021), 164−170. https://doi.org/10.3969/j.issn.1003-7985.2021.02.005 doi: 10.3969/j.issn.1003-7985.2021.02.005
    [118] J. Lei, X. Zhu, Y. Wang, BAT: Block and token self-attention for speech emotion recognition, Neural Networks, 156 (2022), 67−80. https://doi.org/10.1016/j.neunet.2022.09.022 doi: 10.1016/j.neunet.2022.09.022
    [119] L. Yi, M. W. Mak, Improving speech emotion recognition with adversarial data augmentation network, IEEE Trans. Neur. Net. Learn. Syst., 33 (2020), 172−184. https://doi.org/10.1109/tnnls.2020.3027600 doi: 10.1109/tnnls.2020.3027600
    [120] Z. Yucel, S. Koyama, A. Monden, M. Sasakura, Estimating level of engagement from ocular landmarks, Int. J. Hum. Comput. Int., 36 (2020), 1527−1539. https://doi.org/10.1080/10447318.2020.1768666 doi: 10.1080/10447318.2020.1768666
    [121] Z. Pi, M. Chen, F. Zhu, J. Yang, W. Hu, Modulation of instructor's eye gaze by facial expression in video lectures, Innov. Educ. Teach. Int., 59 (2022), 15−23. https://doi.org/10.1080/14703297.2020.1788410 doi: 10.1080/14703297.2020.1788410
    [122] M. Mahmoud, P. Robinson, Interpreting hand-over-face gestures, in International Conference on Affective Computing and Intelligent Interaction, (2011), 248−255. https://doi.org/10.1007/978-3-642-24571-8_27
    [123] K. Zheng, J. Kong, L. Tian, B. Li, H. Li, J. Zhou, Hand-over-face occlusion and distance adaptive heart rate detection based on imaging photoplethysmography and pixel distance in online learning, Biomed. Signal Process., 85 (2023), 104898, https://doi.org/10.1016/j.bspc.2023.104898 doi: 10.1016/j.bspc.2023.104898
    [124] M. Haghighat, M. Abdel-Mottaleb, W. Alhalabi, Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition, IEEE Trans. Inf. Forensics Secur., 11 (2016), 1984−1996. https://doi.org/10.1109/tifs.2016.2569061 doi: 10.1109/tifs.2016.2569061
    [125] S. Koelstra, C. Muehl, M. Soleymani, A. Yazdani, T. Ebrahimi, T. Pun, et al., DEAP: A database for emotion analysis using physiological signals, IEEE Trans. Affect. Comput., 3 (2012), 18−31. https://doi.org/10.1109/t-affc.2011.15 doi: 10.1109/t-affc.2011.15
    [126] A. Zadeh, P. P. Liang, S. Poria, P. Vij, E. Cambria, L. P. Morency, Multi-attention recurrent network for human communication comprehension, in Proceedings of the AAAI Conference on Artificial Intelligence, (2018), 5642−5649. https://doi.org/10.1609/aaai.v32i1.12024
    [127] W. Yu, H. Xu, F. Meng, Y. Zhu, Y. Ma, J. Wu, J. Zou, K. Yang, CH-SIMS: A Chinese multimodal sentiment analysis dataset with fine-grained annotation of modality, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, (2020), 3718−3727. https://doi.org/10.18653/v1/2020.acl-main.343
    [128] N. Xu, W. Mao, G. Chen, Multi-interactive memory network for aspect based multimodal sentiment analysis, in Proceedings of the AAAI Conference on Artificial Intelligence, (2019), 371−378. https://doi.org/10.1609/aaai.v33i01.3301371
    [129] Y. Baveye, E. Dellandrea, C. Chamaret, LIRIS-ACCEDE: A video database for affective content analysis, IEEE Trans. Affect. Comput., 6 (2015), 43−55. https://doi.org/10.1109/taffc.2015.2396531 doi: 10.1109/taffc.2015.2396531
    [130] M. Soleymani, J. Lichtenauer, T. Pun, A multimodal database for affect recognition and implicit tagging, IEEE Trans. Affect. Comput., 3 (2012), 42−55. https://doi.org/10.1109/t-affc.2011.25 doi: 10.1109/t-affc.2011.25
    [131] O. Martin, I. Kotsia, B. Macq, I. Pitas, The eNTERFACE'05 audio-visual emotion database, in Proceedings of the 22nd International Conference on Data Engineering Workshops, (2006). https://doi.org/10.1109/icdew.2006.145
    [132] H. Zhou, J. Du, Y. Zhang, Q. Wang, Q. F. Liu, C. H. Lee, Information fusion in attention networks using adaptive and multi-level factorized bilinear pooling for audio-visual emotion recognition, IEEE-ACM Trans. Audio Speech Lang. Process., 29 (2021), 2617−2629. https://doi.org/10.1109/taslp.2021.3096037 doi: 10.1109/taslp.2021.3096037
    [133] M. Wu, W. Su, L. Chen, W. Pedrycz, K. Hirota, Two-stage fuzzy fusion based-convolution neural network for dynamic emotion recognition, IEEE Trans. Affect. Comput., 13 (2020), 805−817. https://doi.org/10.1109/taffc.2020.2966440 doi: 10.1109/taffc.2020.2966440
    [134] J. Chen, Z. Chen, Z. Chi, H. Fu, Facial expression recognition in video with multiple feature fusion, IEEE Trans. Affect. Comput., 9 (2018), 38−50. https://doi.org/10.1109/taffc.2016.2593719 doi: 10.1109/taffc.2016.2593719
    [135] Y. Kim, E. M. Provost, ISLA: Temporal segmentation and labeling for audio-visual emotion recognition, IEEE Trans. Affect. Comput., 10 (2017), 196−208. https://doi.org/10.1109/taffc.2017.2702653 doi: 10.1109/taffc.2017.2702653
    [136] P. Bhattacharya, R. K. Gupta, Y. P. Yang, Exploring the contextual factors affecting multimodal emotion recognition in videos, IEEE Trans. Affect. Comput., 14 (2023), 1547−1557. https://doi.org/10.1109/taffc.2021.3071503 doi: 10.1109/taffc.2021.3071503
    [137] L. Vaiani, M. L. Quatra, L. Cagliero, P. Garza, ViPER: Video-based perceiver for emotion recognition, in Proceedings of the 3rd International on Multimodal Sentiment Analysis Workshop and Challenge, (2022), 67−73. https://doi.org/10.1145/3551876.3554806
    [138] Y. Wu, Z. Y. Zhang, P. Peng, Y. Y. Zhao, B. Qin, Leveraging multi-modal interactions among the intermediate representations of deep transformers for emotion recognition, in Proceedings of the 3rd International on Multimodal Sentiment Analysis Workshop and Challenge, (2022), 101−109. https://doi.org/10.1145/3551876.3554813
    [139] D. K. Yang, S. Huang, H. P. Kuang, Disentangled representation learning for multimodal emotion recognition, in Proceedings of the 30th ACM International Conference on Multimedia, (2022), 1642−1651. https://doi.org/10.1145/3503161.3547754
    [140] Y. P. Liu, W. Sun, X. Zhang, Y. B. Qin, Improving dimensional emotion recognition via feature-wise fusion, in Proceedings of the 3rd International on Multimodal Sentiment Analysis Workshop and Challenge, (2022), 55−60. https://doi.org/10.1145/3551876.3554804
    [141] M. Y. Tsalamlal, M. A. Amorim, J. C. Martin, M. Ammi, Combining facial expression and touch for perceiving emotional valence, IEEE Trans. Affect. Comput., 9 (2018), 437−449. https://doi.org/10.1109/taffc.2016.2631469 doi: 10.1109/taffc.2016.2631469
    [142] Y. Yang, Q. Gao, Y. Song, X. L. Song, Z. M. Mao, J. J. Liu, Investigating of deaf emotion cognition pattern by EEG and facial expression combination, IEEE J. Biomed. Health, 26 (2022), 589−599. https://doi.org/10.1109/jbhi.2021.3092412 doi: 10.1109/jbhi.2021.3092412
    [143] Siddharth, T. P. Jung, T. J. Sejnowski, Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing, IEEE Trans. Affect. Comput., 13 (2022), 96−107. https://doi.org/10.1109/taffc.2019.2916015 doi: 10.1109/taffc.2019.2916015
    [144] N. Braunschweiler, R. Doddipatla, S. Keizer, S. Stoyanchev, Factors in emotion recognition with deep learning models using speech and text on multiple corpora, IEEE Signal Proc. Lett., 29 (2022), 722−726. https://doi.org/10.1109/lsp.2022.3151551 doi: 10.1109/lsp.2022.3151551
    [145] X. Zhang, J. Liu, J. Shen, S. Li, K. Hou, B. Hu, et al., Emotion recognition from multimodal physiological signals using a regularized deep fusion of kernel machine, IEEE Trans. Cybern., 51 (2021), 4386−4399. https://doi.org/10.1109/tcyb.2020.2987575 doi: 10.1109/tcyb.2020.2987575
    [146] Z. Jia, Y. Lin, J. Wang, Z. Feng, X. Xie, C. Chen, HetEmotionNet: Two-stream heterogeneous graph recurrent neural network for multi-modal emotion recognition, in Proceedings of the 29th ACM International Conference on Multimedia, (2021), 1047−1056. https://doi.org/10.1145/3474085.3475583
    [147] M. Soleymani, M. Pantic, T. Pun, Multimodal emotion recognition in response to videos, IEEE Trans. Affect. Comput., 3 (2011), 211−223. https://doi.org/10.1109/t-affc.2011.37 doi: 10.1109/t-affc.2011.37
    [148] W. L. Zheng, W. Liu, Y. Lu, B. L. Lu, A. Cichocki, Emotionmeter: A multimodal framework for recognizing human emotions, IEEE Trans. Cybern., 49 (2018), 1110−1122. https://doi.org/10.1109/tcyb.2018.2797176 doi: 10.1109/tcyb.2018.2797176
    [149] Q. Wang, M. Wang, Y. Yang, X. Zhang, Multi-modal emotion recognition using EEG and speech signals, Comput. Biol. Med., 149 (2022), 105907. https://doi.org/10.1016/j.compbiomed.2022.105907 doi: 10.1016/j.compbiomed.2022.105907
    [150] S. Scrimin, U. Moscardino, L. Finos, L. Mason, Effects of psychophysiological reactivity to a school-related stressor and temperament on early adolescents' academic performance, J. Early Adolesc., 39 (2019), 904−931. https://doi.org/10.1177/0272431618797008 doi: 10.1177/0272431618797008
    [151] B. Cowley, N. Ravaja, T. Heikura, Cardiovascular physiology predicts learning effects in a serious game activity, Comput. Educ., 60 (2013), 299−309. https://doi.org/10.1016/j.compedu.2012.07.014 doi: 10.1016/j.compedu.2012.07.014
    [152] K. N. Cranford, J. M. Tiettmeyer, B. C. Chuprinko, S. Jordan, N. P. Grove, Measuring load on working memory: The use of heart rate as a means of measuring chemistry students' cognitive load, J. Chem. Educ., 91 (2014), 641−647. https://doi.org/10.1021/ed400576n doi: 10.1021/ed400576n
    [153] N. Thompson, T. J. McGill, Genetics with Jean: The design, development and evaluation of an affective tutoring system, Educ. Technol. Res., 65 (2017), 279−299. https://doi.org/10.1007/s11423-016-9470-5 doi: 10.1007/s11423-016-9470-5
    [154] A. Versluis, B. Verkuil, P. Spinhoven, J. F. Brosschot, Feasibility and effectiveness of a worry-reduction training using the smartphone: A pilot randomised controlled trial, Br. J. Guid. Couns., 48 (2020), 227−239. https://doi.org/10.1080/03069885.2017.1421310 doi: 10.1080/03069885.2017.1421310
    [155] K. Fromel, Z. Svozil, F. Chmelik, L. Jakubec, D. Groffik, The role of physical education lessons and recesses in school lifestyle of adolescents, J. School Health, 86 (2016), 143−151. https://doi.org/10.1111/josh.12362 doi: 10.1111/josh.12362
    [156] M. Slingerland, L. Haerens, G. Cardon, L. Borghouts, Differences in perceived competence and physical activity levels during single-gender modified basketball game play in middle school physical education, Eur. Phys. Educ. Rev., 20 (2014), 20−35. https://doi.org/10.1177/1356336x13496000 doi: 10.1177/1356336x13496000
    [157] P. Klein, J. Viiri, S. Mozaffari, A. Dengel, J. Kuhn, Instruction-based clinical eye-tracking study on the visual interpretation of divergence: How do students look at vector field plots?, Phys. Rev. Phys. Educ. Res., 14 (2018), 010116. https://doi.org/10.1103/physrevphyseducres.14.010116 doi: 10.1103/physrevphyseducres.14.010116
    [158] A. I. Molina, O. Navarro, M. Ortega, M. Lacruz, Evaluating multimedia learning materials in primary education using eye tracking, Comput. Stand. Int., 59 (2018), 45−60. https://doi.org/10.1016/j.csi.2018.02.004 doi: 10.1016/j.csi.2018.02.004
    [159] L. Mason, P. Pluchino, M. C. Tornatora, Using eye-tracking technology as an indirect instruction tool to improve text and picture processing and learning, Br. J. Educ. Technol., 47 (2016), 1083−1095. https://doi.org/10.1111/bjet.12271 doi: 10.1111/bjet.12271
    [160] M. Van Wermeskerken, T. Van Gog, Seeing the instructor's face and gaze in demonstration video examples affects attention allocation but not learning, Comput. Educ., 113 (2017), 98−107. https://doi.org/10.1016/j.compedu.2017.05.013 doi: 10.1016/j.compedu.2017.05.013
    [161] V. Clinton, J. L. Cooper, J. E. Michaelis, M. W. Alibali, M. J. Nathan, How revisions to mathematical visuals affect cognition: Evidence from eye tracking, in Eye-Tracking Technology Applications in Educational Research, (2017), 195−218. https://doi.org/10.4018/978-1-5225-1005-5.ch010
    [162] Y. C. Jian, Eye-movement patterns and reader characteristics of students with good and poor performance when reading scientific text with diagrams, Reading. Writing., 30 (2017), 1447−1472. https://doi.org/10.1007/s11145-017-9732-6 doi: 10.1007/s11145-017-9732-6
    [163] J. M. Karch, J. C. Garcia Valles, H. Sevian, Looking into the black box: Using gaze and pupillometric data to probe how cognitive load changes with mental tasks, J. Chem. Educ., 96 (2019), 830−840. https://doi.org/10.1021/acs.jchemed.9b00014 doi: 10.1021/acs.jchemed.9b00014
    [164] K. Krstic, A. Soskic, V. Kovic, K. Holmqvist, All good readers are the same, but every low-skilled reader is different: an eye-tracking study using PISA data, Eur. J. Psychol. Educ., 33 (2018), 521−541. https://doi.org/10.1007/s10212-018-0382-0 doi: 10.1007/s10212-018-0382-0
    [165] X. Zhu, Z. Chen, Dual-modality spatiotemporal feature learning for spontaneous facial expression recognition in e-learning using hybrid deep neural network, Vis. Comput., 36 (2020), 743−755. https://doi.org/10.1007/s00371-019-01660-3 doi: 10.1007/s00371-019-01660-3
    [166] B. T. Shobana, G. A. Kumar, I-Quiz: An intelligent assessment tool for non-verbal behaviour detection, Comput. Syst. Sci. Eng., 40 (2022), 1007−1021. https://doi.org/10.32604/csse.2022.019523 doi: 10.32604/csse.2022.019523
    [167] T. S. Ashwin, R. M. R. Guddeti, Impact of inquiry interventions on students in e-learning and classroom environments using affective computing framework, User Model. User-Adap. Int., 30 (2020), 759−801. https://doi.org/10.1007/s11257-019-09254-3 doi: 10.1007/s11257-019-09254-3
    [168] I. Alkabbany, A. Ali, A. Farag, I. Bennett, M. Ghanoum, A. Farag, Measuring student engagement level using facial information, in 2019 IEEE International Conference on Image Processing (ICIP), (2019), 3337−3341. https://doi.org/10.1109/icip.2019.8803590
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(650) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog