Research article

A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity

  • Received: 26 February 2024 Revised: 14 April 2024 Accepted: 17 April 2024 Published: 24 April 2024
  • In this paper, we study an initial value problem with a weakly singular nonlinear fractional differential equation of higher order. First, we establish the existence of global solutions to the problem within the appropriate function space. We then introduce a generalized Riemann-Liouville mean value theorem. Using this theorem, we prove the Nagumo-type uniqueness theorem for the stated problem. Moreover, we give two examples to illustrate the applicability of the existence and uniqueness theorems.

    Citation: Mufit San, Seyma Ramazan. A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity[J]. Electronic Research Archive, 2024, 32(5): 3092-3112. doi: 10.3934/era.2024141

    Related Papers:

  • In this paper, we study an initial value problem with a weakly singular nonlinear fractional differential equation of higher order. First, we establish the existence of global solutions to the problem within the appropriate function space. We then introduce a generalized Riemann-Liouville mean value theorem. Using this theorem, we prove the Nagumo-type uniqueness theorem for the stated problem. Moreover, we give two examples to illustrate the applicability of the existence and uniqueness theorems.



    加载中


    [1] J. R. L. Webb, Initial value problems for Caputo fractional equations with singular nonlinearities, Electron. J. Differ. Equations, 2019 (2019), 1–32.
    [2] K. Lan, Equivalence of higher order linear Riemann-Liouville fractional differential and integral equations, Proc. Am. Math. Soc., 148 (2020), 5225–5234. https://doi.org/10.1090/proc/15169 doi: 10.1090/proc/15169
    [3] J. R. L. Webb, A fractional Gronwall inequality and the asymptotic behaviour of global solutions of Caputo fractional problems, Electron. J. Differ. Equations, 2021 (2021), 1–22. https://doi.org/10.58997/ejde.2021.80 doi: 10.58997/ejde.2021.80
    [4] N. M. Dien, Weakly singular Henry-Gronwall-Bihari type inequalities and their applications, J. Math. Inequal., 16 (2022), 289–306. https://doi.org/10.7153/jmi-2022-16-21 doi: 10.7153/jmi-2022-16-21
    [5] T. Zhu, Weakly singular integral inequalities and global solutions for fractional differential equations of Riemann-Liouville type, Mediterr. J. Math., 18 (2021), 1–17. https://doi.org/10.1007/s00009-021-01824-3 doi: 10.1007/s00009-021-01824-3
    [6] R. P. Agarwal, V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific Publishing, Washington, 1993. https://doi.org/10.1142/1988
    [7] K. Diethelm, The mean value theorems and a Nagumo-type uniqueness theorem for Caputo's fractional calculus, Fract. Calc. Appl. Anal., 15 (2012), 304–313. https://doi.org/10.2478/s13540-012-0022-3 doi: 10.2478/s13540-012-0022-3
    [8] V. Lakshmikantham, S. Leela, Nagumo-type uniqueness result for fractional differential equations, Nonlinear Anal.: Theory Methods Appl., 71 (2009), 2886–2889. https://doi.org/10.1016/j.na.2009.01.169 doi: 10.1016/j.na.2009.01.169
    [9] U. Sert, M. San, Some analysis on a fractional differential equation with a right-hand side which has a discontinuity at zero, Hacet. J. Math. Stat., 49 (2020), 1718–1725. https://doi.org/10.15672/hujms.512563 doi: 10.15672/hujms.512563
    [10] E. Aljarallah, I. Bachar, Existence and global asymptotic behavior of positive solutions for superlinear singular fractional boundary value problems, Fractal Fract., 7 (2023), 527. https://doi.org/10.3390/fractalfract7070527 doi: 10.3390/fractalfract7070527
    [11] L. P. Castro, A. S. Silva, On the existence and stability of solutions for a class of fractional Riemann-Liouville initial value problems, Mathematics, 11 (2023), 297. https://doi.org/10.3390/math11020297 doi: 10.3390/math11020297
    [12] L. Guo, W. Wang, C. Li, J. Zhao, D. Min, Existence results for a class of nonlinear singular $ p $-Laplacian Hadamard fractional differential equations, Electron. Res. Arch., 32 (2024), 928–944. https://doi.org/10.3934/era.2024045 doi: 10.3934/era.2024045
    [13] C. Li, S. Sarwar, Existence and continuation of solutions for Caputo-type fractional differential equations, Electron. J. Differ. Equations, 207 (2016), 1–14.
    [14] Y. Sheng, T. Zhang, The existence theory of solution in Sobolev space for fractional differential equations, Appl. Math. Lett., 149 (2024), 108896. https://doi.org/10.1016/j.aml.2023.108896 doi: 10.1016/j.aml.2023.108896
    [15] M. San, Complex variable approach to the analysis of a fractional differential equation in the real line, C. R. Math., 356 (2018), 293–300. https://doi.org/10.1016/j.crma.2018.01.008 doi: 10.1016/j.crma.2018.01.008
    [16] S. S. Bilgici, M. San, Existence and uniqueness results for a nonlinear singular fractional differential equation of order $\sigma \in (1, 2), $ AIMS Math., 6 (2021), 13041–13056. https://doi.org/10.3934/math.2021754
    [17] X. Su, S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Comput. Math. Appl., 61 (2011), 1079–1087. https://doi.org/10.1016/j.camwa.2010.12.058 doi: 10.1016/j.camwa.2010.12.058
    [18] W. Jiang, Solvability for fractional differential equations at resonance on the half line, Appl. Math. Comput., 247 (2014), 90–99. https://doi.org/10.1016/j.amc.2014.08.067 doi: 10.1016/j.amc.2014.08.067
    [19] X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Methods Appl. Sci., 41 (2018), 6984–6996. https://doi.org/10.1002/mma.5210 doi: 10.1002/mma.5210
    [20] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, 1993.
    [21] C. Li, W. Deng, Remarks on fractional derivatives, Appl. Math. Comput., 187 (2007), 777–784. https://doi.org/10.1016/j.amc.2006.08.163 doi: 10.1016/j.amc.2006.08.163
    [22] E. Zeidler, Nonlinear Functional Analysis and its Applications, I: Fixed-point Theorems, Springer, New York, 1986.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(615) PDF downloads(85) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog