We have considered a generalized Sylvester-transpose matrix equation $ AXB + CX^TD = E, $ where $ A, B, C, D, $ and $ E $ are given rectangular matrices over a generalized quaternion skew-field, and $ X $ is an unknown matrix. We have applied certain vectorizations and real representations to transform the matrix equation into a matrix equation over the real numbers. Thus, we have investigated a solvability condition, general exact/least-squares solutions, minimal-norm solutions, and the exact/least-squares solution closest to a given matrix. The main equation included the equation $ AXB = E $ and the Sylvester-transpose equation. Our results also covered such matrix equations over the quaternions, and quaternionic linear systems.
Citation: Janthip Jaiprasert, Pattrawut Chansangiam. Exact and least-squares solutions of a generalized Sylvester-transpose matrix equation over generalized quaternions[J]. Electronic Research Archive, 2024, 32(4): 2789-2804. doi: 10.3934/era.2024126
We have considered a generalized Sylvester-transpose matrix equation $ AXB + CX^TD = E, $ where $ A, B, C, D, $ and $ E $ are given rectangular matrices over a generalized quaternion skew-field, and $ X $ is an unknown matrix. We have applied certain vectorizations and real representations to transform the matrix equation into a matrix equation over the real numbers. Thus, we have investigated a solvability condition, general exact/least-squares solutions, minimal-norm solutions, and the exact/least-squares solution closest to a given matrix. The main equation included the equation $ AXB = E $ and the Sylvester-transpose equation. Our results also covered such matrix equations over the quaternions, and quaternionic linear systems.
[1] | E. D. Geir, P. Fernando, A Course in Robust Control Theory: A Convex Approach, Springer, New York, 1999. |
[2] | F. Lewis, A survey of linear singular systems, Circ. Syst. Signal Process., 5 (1986), 3–36. https://doi.org/10.1007/BF01600184 doi: 10.1007/BF01600184 |
[3] | L. Dai, Singular Control Systems, Springer, Berlin, 1989. https://doi.org/10.1007/BFb0002475 |
[4] | L. R. Fletcher, J. Kuatsky, N. K. Nichols, Eigenstructure assignment in descriptor systems, IEEE Trans. Autom. Control, 31 (1986), 1138–1141. https://doi.org/10.1109/TAC.1986.1104189 doi: 10.1109/TAC.1986.1104189 |
[5] | P. M. Frank, Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy a survey and some new results, Automatica, 26 (1990), 459–474. https://doi.org/10.1016/0005-1098(90)90018-D doi: 10.1016/0005-1098(90)90018-D |
[6] | J. Jaiprasert, P. Chansangiam, Solving the Sylvester-transpose matrix equation under the semi-tensor product, Symmetry, 14 (2022), 1094. https://doi.org/10.3390/sym14061094 doi: 10.3390/sym14061094 |
[7] | N. Boonruangkan, P. Chansangiam, Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation, AIMS Math., 6 (2021), 8477–8496. https://doi.org/10.3934/math.2021492 doi: 10.3934/math.2021492 |
[8] | K. Tansri, P. Chansangiam, Conjugate gradient algorithm for least-squares solutions of a generalized Sylvester-transpose matrix equation, Symmetry, 14 (2022), 1868. https://doi.org/10.3390/sym14091868 doi: 10.3390/sym14091868 |
[9] | Y. J. Xie, C. F. Ma, The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester transpose matrix equation, Appl. Math. Comput., 273 (2016), 1257–1269. https://doi.org/10.1016/j.amc.2015.07.022 doi: 10.1016/j.amc.2015.07.022 |
[10] | M. Hajarian, Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix equations, J. Franklin Inst., 353 (2016), 1168–1185. https://doi.org/10.1016/j.jfranklin.2015.05.024 doi: 10.1016/j.jfranklin.2015.05.024 |
[11] | A. Kittisopapron, P. Chansangiam, Approximated least-squares solutions of a generalized Sylvester-transpose matrix equation via gradient-descent iterative algorithm, Adv. Differ. Equations, 2021 (2021), 266. https://doi.org/10.1186/s13662-021-03427-4 doi: 10.1186/s13662-021-03427-4 |
[12] | K. Tansri, S. Choomklang, P. Chansangiam, Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations, AIMS Math., 7 (2022), 5386–5407. https://doi.org/10.3934/math.2022299 doi: 10.3934/math.2022299 |
[13] | M. Wang, X. Cheng, Iterative algorithm for solving the matrix equation $AXB + CX^TD = E$, Appl. Math. Comput., 187 (2007), 622–629. https://doi.org/10.1016/j.amc.2006.08.169 doi: 10.1016/j.amc.2006.08.169 |
[14] | S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, 1$^{st}$ edition, Oxford U.P., New York, 1995. |
[15] | D. Finkelstein, J. M. Jauch, S. Schiminovich, D. Speiser, Foundations of quaternion quantum mechanics, J. Math. Phys., 3 (1962), 3207–3220. https://doi.org/10.1063/1.1703794 doi: 10.1063/1.1703794 |
[16] | R. Heise, B. A. Macdonald, Quaternions and motion interpolation: A tutorial, in New Advances in Computer Graphics, (eds. R. A. Earnshaw and B. Wyvill), Springer, (1989), 229–243. https://doi.org/10.1007/978-4-431-68093-2_14 |
[17] | D. Pletincks, Quaternion calculus as a basic tool in computer graphics, Visual Comput., 5 (1989), 2–13. https://doi.org/10.1007/BF01901476 doi: 10.1007/BF01901476 |
[18] | T. Li, Q. W. Wang, X. F. Zhang, A modified conjugate residual method and nearest Kronecker product preconditioner for the generalized coupled Sylvester tensor equations, Mathermatics, 10 (2022), 1730. https://doi.org/10.3390/math10101730 doi: 10.3390/math10101730 |
[19] | Z. H. He, X. X. Wang, Y. F. Zhao, Eigenvalues of quaternion tensors with applications to color video processing, J. Sci. Comput., 94 (2023). https://doi.org/10.1007/s10915-022-02058-5 doi: 10.1007/s10915-022-02058-5 |
[20] | Z. H. He, C. Navasca, X. X. Wang, Decomposition for a quaternion tensor triplet with applications, Adv. Appl. Clifford Algebras, 32 (2022). https://doi.org/10.1007/s00006-021-01195-8 doi: 10.1007/s00006-021-01195-8 |
[21] | Z. H. He, Some new results on a system of Sylvester-type quaternion matrix equations, Linear Multilinear Algebra, 69 (2021), 3069–3091. https://doi.org/10.1080/03081087.2019.1704213 doi: 10.1080/03081087.2019.1704213 |
[22] | X. Liu, Y. Zhang, Matrices over Quaternion Algebras, in Matrix and Operator Equations and Applications, (eds. M. S. Moslehian), Springer, (2023), 139–183. https://doi.org/10.1007/978-3-031-25386-7 |
[23] | M. Jafari, Y. Yuyli, Generalized quaternions and their algebraic properties, Commun. Fac. Sci. Univ. Ank. Series A1 Math. Stat., 64 (2015), 15–27. https://doi.org/10.1501/Commual_0000000724 doi: 10.1501/Commual_0000000724 |
[24] | J. Ping, H. T. Wu, A closed-form forward kinematics solution for the 6-$6^p$ Stewart platform, IEEE Trans. Rob. Autom., 17 (2001), 522–526. https://doi.org/10.1109/70.954766 doi: 10.1109/70.954766 |
[25] | F. X. Zhang, M. S. Wei, Y. Li, J. L. Zhao, Special least squares solutions of the quaternion matrix equation $AX = B$ with applications, Appl. Math. Comput., 270 (2015), 425–433. https://doi.org/10.1016/j.amc.2015.08.046 doi: 10.1016/j.amc.2015.08.046 |
[26] | F. Caccavale, C. Natale, B. Siciliano, L. Villani, Six-dof impedance control based on angle/axis representaions, IEEE Trans. Rob. Autom., 15 (1999), 289–300. https://doi.org/10.1109/70.760350 doi: 10.1109/70.760350 |
[27] | Z. Jia, M. K. Ng, Color image restoration by saturation-value total variation, SIAM J. Imag. Sci., 12 (2019), 2. https://doi.org/10.1137/18M1230451 doi: 10.1137/18M1230451 |
[28] | Z. Jia, M. K. Ng, G. J. Song, Robust quaternion matrix completion with applications to image inpainting, Numer. Linear Algebra Appl., 26 (2019), e2245. https://doi.org/10.1002/nla.2245 doi: 10.1002/nla.2245 |
[29] | Z. Jia, Q. Jin, M. K. Ng, X. L. Zhao, Non-local robust quaternion matrix completion for large-scale color image and video inpainting, IEEE Trans. Image Process., 31 (2022), 3868–3883. https://doi.org/10.1109/TIP.2022.3176133 doi: 10.1109/TIP.2022.3176133 |
[30] | C. E. Moxey, S. J. Sangwine, T. A. Ell, Hypercomplex correlation techniques for vector imagines, IEEE Trans. Signal Process., 51 (2003), 1941–1953. https://doi.org/10.1109/TSP.2003.812734 doi: 10.1109/TSP.2003.812734 |
[31] | S. L. Adler, Scattering and decay theory for quaternionic quantum mechanics and structure of induced $t$ nonconservation, Phys. Rev. D, 37 (1988), 3654–3662. https://doi.org/10.1103/PhysRevD.37.3654 doi: 10.1103/PhysRevD.37.3654 |
[32] | Z. Jia, M. Wei, M. X. Zhao, Y. Chen, A new real structure-preserving quaternion QR algorithm, J. Comput. Appl. Math., 343 (2018), 26–48. https://doi.org/10.1016/j.cam.2018.04.019 doi: 10.1016/j.cam.2018.04.019 |
[33] | S. F. Yuan, Least squares pure imaginary solution and real solution of quaternion matrix equation $AXB + CXD = E$ with the least norm, J. Appl. Math., 2014 (2014), 1–9. https://doi.org/10.1155/2014/857081 doi: 10.1155/2014/857081 |
[34] | F. Zhang, W. Mu, Y. Li, J. Zhao, Special least squares solutions of the quaternion matrix equation $AXB + CXD = E$, Comput. Math. Appl., 72 (2016), 1426–1435. https://doi.org/10.1016/j.camwa.2016.07.019 doi: 10.1016/j.camwa.2016.07.019 |
[35] | Y. Tian, X. Liu, S. F. Yuan, On Hermitian solutions of the generalized quaternion matrix equation $AXB + CXD = E$, Math. Probl. Eng., 2021 (2021), 1–10. https://doi.org/10.1155/2021/1497335 doi: 10.1155/2021/1497335 |
[36] | D. A. Turkington, Matrix Calculus & Zero-One Matrices: Statistical and Econometric Applications, Cambridge University Press, Cambridge, 2002. https://doi.org/10.1017/CBO9780511528460 |
[37] | A. B. Israel, T. N. E. Greville, Generalized Inverses: Theory and applications, 3$^{rd}$ edition, Springer, New York, 2003. https://doi.org/10.1007/b97366 |
[38] | Z. Jia, M. K. Ng, Structure preserving quaternion generalized minimal residual method, SIAM J. Matrix Anal. Appl., 42 (2021), 616–634. https://doi.org/10.1137/20M133751X doi: 10.1137/20M133751X |