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Abstract: We have considered a generalized Sylvester-transpose matrix equation AXB +CXT D = E,
where A, B,C,D, and E are given rectangular matrices over a generalized quaternion skew-field, and X
is an unknown matrix. We have applied certain vectorizations and real representations to transform the
matrix equation into a matrix equation over the real numbers. Thus, we have investigated a solvability
condition, general exact/least-squares solutions, minimal-norm solutions, and the exact/least-squares
solution closest to a given matrix. The main equation included the equation AXB = E and the
Sylvester-transpose equation. Our results also covered such matrix equations over the quaternions, and
quaternionic linear systems.
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1. Introduction

Linear matrix equations over the field R of real numbers have a strong connection to certain
problems in differential equations, and control and system theory [1–3]. Indeed, the Sylvester-transpose
matrix equation

AX + XT D = E, (1.1)

is closely related to eigenstructure assignment [4], pole assignment [3], and fault detection in dynamical
systems [5]. More generally, many authors investigated a generalized Sylvester-transpose equation:

AXB +CXT D = E, (1.2)

and a generalized Sylvester one

AXB +CXD = E. (1.3)
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In the last decade, theory and computational aspects for such equations were investigated for
Eq (1.1) [6] and Eq (1.2) [7–13].

Instead of the real number field, we can develop a theory for matrix equations over suitable algebraic
structures, e.g., the quaternion skew-field or other skew-fields. Recall that the (Hamilton) quaternions

Q =
{
q1 + q2i + q3 j + q4k

∣∣∣ q1, q2, q3, q4 ∈ R
}
,

is a non-comutative division ring with respect to the coordinatewise addition and the Hamilton multipli-
cation defined by

i2 = j2 = k2 = −1, i j = − ji = k, (1.4)
jk = −k j = i, ki = −ik = j.

The quaternions are widely used in quantum physics [14, 15], computer graphics [16], robot tra-
jectory planning [17], and modeling [18], etc., [19–21]. The reader can find more information about
quaternions in the survey paper [22]. Moreover, if we generalize the rule (1.4), then we get a generalized
quaternion [23]. Let u, v ∈ R − {0}. Let Qu,v be a four-dimensionl vector space over R with an ordered
basis {1, i, j, k}, i.e.,

Qu,v =
{
x1 + x2i + x3 j + x4k

∣∣∣ x1, x2, x3, x4 ∈ R
}
.

The additon and the scalar multiplication on Qu,v are defined in usual ways. The multiplication of
any two of 1, i, j, or k is defined so that 1 acts as an identity, and the following rules apply:

i2 = u, j2 = v, k2 = i jk = −uv,

i j = − ji = k, jk = −k j = −vi, ik = −ki = u j.

It turns out that Qu,v becomes a non-commutative division ring. A famous special case (u, v) =
(−1,−1) ofQu,v is known as the Hamilton quaternions. The case (u, v) = (−1, 1), the case (u, v) = (1,−1),
and the case (u, v) = (1, 1) are called the split quaternion ring, the nectarine quaternion ring, and the
conectarine quaternion ring, respectively.

Matrices over quaternions are one of the main interest topics in linear algebra [22]. Matrix equa-
tions over Q or Qu,v turn out to be important in various fields, e.g., computer platforms [24], image
processing [25, 26], color image restoration [27], image and video inpainting [28, 29], signal process-
ing [30] and quantum mechanics [31]. In the last decade, various authors investigated such matrix
equations from theoretical points of view. The work in [32] introduced fast and robust algorithms for
the eigenproblem and the QR factorization of matrices over Q. Yuan et al. [33] proposed an explicit
expression of the least-squares (LS) solution, the LS pure-imaginary solution, and the real solution of
Eq (1.3) with the least norm. Zhang et al. [34] studied special LS solutions of Eq (1.3), and obtained the
expressions of the minimal-norm LS solution, the pure-imaginary LS solution, and the real LS solution.
Recently, Tian et al. [35] considered Hermitian solutions of Eq (1.3). Indeed, they proposed necessary
and sufficient conditions for the existence of a Hermitian solution and provided the explicit general
expression of the solution when it was solvable.

In this paper, we investigated the Sylvester-transpose matix Eq (1.2) where A, B,C,D, and E are
given generalized quaternion matices with compatible size and X is an unknown. We have measured the
associated error of a matrix by the Frobenius norm ∥·∥. Indeed, we have discussed the following problems.
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Problem 1.1. Find the solution set S of exact solutions to Eq (1.2). In addition, find the minimal-norm
element of S, i.e., find a matrix X∗ such that

∥X∗∥ = min
X∈S
∥X∥ .

Problem 1.2. Find a solution X̄ ∈ S closest to a given matrix Y ∈ Qn×p
u,v , i.e., find X̄ such that∥∥∥X̄ − Y

∥∥∥ = min
X∈S
∥X − Y∥ .

Problem 1.3. Find the set L of LS solutions to Eq (1.2). In addition, find X̃ such that∥∥∥X̃
∥∥∥ = min

X∈L
∥X∥ .

Problem 1.4. Find an LS solution of Eq (1.2) closest to a given matrix Y ∈ Qn×p
u,v . That is, find the

matrix X́ such that ∥∥∥X́ − Y
∥∥∥ = min

X∈L
∥X − Y∥ .

Moreover, we have discussed certain special cases of Eq (1.2), namely Eq (1.1), the equation
AXB = E, and the case when u = v = −1.

The rest of this paper is structured as follows. In Section 2, we set up basic notations and provide
auxiliary tools from matrix theory in order to study matrix equations. In Section 3, we investigate
Problems 1.1 and 1.2. In Section 4, we investigate Problems 1.3 and 1.4. In Section 5, we take a look at
certain special cases of the main Eq (1.2). In Section 6, we provide numerical examples to illustrate our
theory. Finally, we summarize the whole work in the last section.

2. Preliminaries

Let us denote by Rm×n the set of all m × n real matrices. The set of n-dimensional real vectors is
written by Rn := Rn×1. The transpose, the conjugate, the Moor-Penrose inverse, and the Frobenius norm
of a matrix A are written by AT , Ā, A† and ∥A∥, respectively. The identity matrix of order n is denoted
by In. The ith column of a matrix A is denoted by coli(A).

2.1. Vectorization and Kronecker products

With each matrix A = (ai j) ∈ Rm×n and B ∈ Rs×t, the (column) vector Vc(A) is defined as

Vc(A) =
(
a11 . . . am1 a12 . . . am2 . . . a1n . . . amn

)T
∈ Rmn,

and the Kronecker product of A and B is defined as

A ⊗ B = (ai jB) =


a11B a12B . . . a1 jB
a21B a22B . . . a2 jB
...

...
. . .

...

ai1B ai2B . . . ai jB

 ∈ Rms×nt.
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Lemma 2.1. [36] For any A ∈ Rm×n, X ∈ Rn×p, and C ∈ Rp×q, we have

Vc(AXC) = (CT ⊗ A) Vc(X).

Lemma 2.2. [36] For any X ∈ Rn×p, we have

Vc(XT ) = P(n, p) Vc(X).

Here, P(n, p) is a permutation matrix defined by

P(n, p) =
n∑

i=1

p∑
j=1

Ei j ⊗ ET
i j,

where each Ei j ∈ R
n×p has entry 1 in position (i, j) and all other entries are zero.

2.2. Real representations of generalized quaternion matrices

For any positive integers m and n, we denote the set of all m × n generalized quaternion matrices by
Qm×n

u,v . For each A ∈ Qm×n
u,v , we can write

A = A1 + A2i + A3 j + A4k,

where A1, A2, A3, A4 ∈ R
m×n. We define

Γ(A) =


A1

A2

A3

A4

 ∈ R4m×n.

Now, consider X = X1 + X2i + X3 j + X4k ∈ Qn×p
u,v , where X1, X2, X3, X4 ∈ R

n×p. We have

AX = (A1 + A2i + A3 j + A4k)(X1 + X2i + X3 j + X4k)
= A1(X1 + X2i + X3 j + X4k) + A2i(X1 + X2i + X3 j + X4k)
+ A3 j(X1 + X2i + X3 j + X4k) + A4k(X1 + X2i + X3 j + X4k)

= (A1X1 + uA2X2 + vA3X3 − uvA4X4) + (A1X2 + A2X1 − vA3X4 + vA4X3)i
+ (A1X3 + uA2X4 + A3X1 − uA4X2) j + (A1X4 + A2X3 − A3X2 + A4X1)k.

Thus,

Γ(AX) =


A1X1 + uA2X2 + vA3X3 − uvA4X4

A1X2 + A2X1 − vA3X4 + vA4X3

A1X3 + uA2X4 + A3X1 − uA4X2

A1X4 + A2X3 − A3X2 + A4X1

 = R(A)


X1

X2

X3

X4

 , (2.1)

where

R(A) =


A1 uA2 vA3 −uvA4

A2 A1 vA4 −vA3

A3 −uA4 A1 uA2

A4 −A3 A2 A1

 ,
Electronic Research Archive Volume 32, Issue 4, 2789–2804.
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is called a real matrix representation of A. From the block columns of A, it is useful to define the following:

Θ(A) =


uA2

A1

−uA4

−A3

 , ∆(A) =


vA3

vA4

A1

A2

 , Φ(A) =


−uvA4

−vA3

uA2

A1

 ∈ R4m×n.

Clearly, the transformations Vc,Γ,Θ,∆, and Φ are injective. It is easy to see that

∥A∥ =
√
∥A1∥

2 + ∥A2∥
2 + ∥A3∥

2 + ∥A4∥
2 = ∥Γ(A)∥ . (2.2)

Proposition 2.3. [35] Let A, B ∈ Qm×n
u,v and k ∈ R. Then the following properties hold.

(i) Γ(A + B) = Γ(A) + Γ(B), Γ(kA) = k(A).
(ii) R(AB) = R(A)R(B).

(iii) R(Im) = I4m.

3. Consistent generalized Sylvester-transpose matrix equation

In this section, we discuss how to solve the Sylvester-transpose matrix equation

AXB + CXT D = E, (3.1)

where A ∈ Qm×n
u,v , B ∈ Q

p×q
u,v ,C ∈ Q

m×p
u,v ,D ∈ Q

n×q
u,v , and E ∈ Qm×q

u,v are given matrices and X ∈ Qn×p
u,v is an

unknown. Our idea is to transform Eq (3.1) into a real linear system. So, let us recall the following result.

Lemma 3.1. [37] Given K ∈ Rm×n and b ∈ Rm, we consider the linear system

Kx = b. (3.2)

Then the system (3.2) has a solution x ∈ Rn if and only if KK†b = b, where K† is the Moore-Penrose
inverse of K. For the consistent case, we have the following:

(i) The general solution of Eq (3.2) is given by

x = K†b + (In − K†K)y, (3.3)

where y ∈ Rn is an arbitrary vector.
(ii) Among the general solution (3.3), the minimal-norm solution is given by

x = K†b. (3.4)

(iii) If rank(K) = n, then the system (3.2) has an unique solution given by (3.4).

The next lemmas are utilized to transform Eq (3.1) into a linear system.

Lemma 3.2. Let A, B,C, and D ∈ Rm×n. Then

Vc


AT

BT

CT

DT

 = P(m, 4n)(P(4, n) ⊗ Im) Vc


A
B
C
D

 .
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Proof. Using Lemma 2.2, we obtain

Vc


AT

BT

CT

DT

 = Vc

(
A B C D

)T
= P(m, 4n) Vc

(
A B C D

)

= P(m, 4n)


Vc(A)
Vc(B)
Vc(C)
Vc(D)

 = P(m, 4n)(P(4, n) ⊗ Im) Vc


A
B
C
D

 .

Lemma 3.3. Let X ∈ Qn×p
u,v . Then

Vc(Γ(X))
Vc(Θ(X))
Vc(∆(X))
Vc(Φ(X))

 = MVc(Γ(X)), where M =


I4np

Ip ⊗ Rp ⊗ In

Ip ⊗ S p ⊗ In

Ip ⊗ Tp ⊗ In

 ∈ R16np×4np, (3.5)

and

Rp =
(
e4

2 ue4
1 −e4

4 −ue4
3

)
∈ R4×4,

S p =
(
e4

3 e4
4 ve4

1 ve4
2

)
∈ R4×4,

Tp =
(
e4

4 ue4
3 −ve4

2 −uve4
1

)
∈ R4×4,

where e4
i = coli(I4).

Proof. We compute

Vc(Θ(X)) =



u col1(X2)
col1(X1)
−u col1(X4)
− col1(X3)
...

u colp(X2)
colp(X1)
−u colp(X4)
− colp(X3)


=



0 uIn 0 0 . . . 0 0 0 0
In 0 0 0 . . . 0 0 0 0
0 0 0 −uIn . . . 0 0 0 0
0 0 −In 0 . . . 0 0 0 0
...
...

...
...

. . .
...
...

...
...

0 0 0 0 . . . 0 uIn 0 0
0 0 0 0 . . . In 0 0 0
0 0 0 0 . . . 0 0 0 −uIn

0 0 0 0 . . . 0 0 −In 0





col1(X1)
col1(X2)
col1(X3)
col1(X4)
...

colp(X1)
colp(X2)
colp(X3)
colp(X4)


= Ip ⊗

[(
e4

2 ue4
1 −e4

4 −ue4
3

)
⊗ In

]
Vc(Γ(X))

= (Ip ⊗ Rp ⊗ In) Vc(Γ(X)).

With a similar process, we obtain

Electronic Research Archive Volume 32, Issue 4, 2789–2804.
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Vc(∆(X)) = Ip ⊗
[(

e4
3 e4

4 ve4
1 ve4

2

)
⊗ In

]
Vc(Γ(X))

= (Ip ⊗ S p ⊗ In) Vc(Γ(X)),

and

Vc(Φ(X)) = Ip ⊗
[(

e4
4 ue4

3 −ve4
2 −uve4

1

)
⊗ In

]
Vc(Γ(X))

= (Ip ⊗ Tp ⊗ In) Vc(Γ(X)).

Thus, we obtain Eq (3.5).

Theorem 3.4. Consider Eq (3.1). Let us denote

W =
(
Γ(B)T ⊗ R(A)

)
+

(
Γ(D)T ⊗ R(C)

)
(I4 ⊗ P(n, 4p)(P(4, p) ⊗ In)). (3.6)

(i) The matrix Eq (3.1) has a solution if and only if

(WM)(WM)†Vc(Γ(E)) = Vc(Γ(E)).

(ii) Then the solution set S of Problem 1.1 can be expressed as

S =

{
X

∣∣∣ Vc(Γ(X)) = (WM)†Vc(Γ(E)) +
[
I4np − (WM)†(WM)

]
y
}
, (3.7)

where y ∈ R4np is an arbitrary vector.
(iii) Among all solutions (3.7), the minimal-norm solution is given by

Vc(Γ(X)) = (WM)†Vc(Γ(E)). (3.8)

(iv) WhenWM is of full-column rank, Eq (3.1) has a unique solution given by (3.8).

Proof. From Eq (3.1), we consider the associated norm-error ∥AXB + CXT D − E∥. Using Eq (2.2),
Proposition 2.3 and Lemma 2.1, we obtain∥∥∥AXB +CXT D − E

∥∥∥ = ∥∥∥Γ(AXB +CXT D − E)
∥∥∥

=
∥∥∥Γ(AXB) + Γ(CXT D) − Γ(E)

∥∥∥
=

∥∥∥R(A)R(X)Γ(B) + R(C)R(XT )Γ(D) − Γ(E)
∥∥∥

=
∥∥∥∥Vc

[
R(A)R(X)Γ(B) + R(C)R(XT )Γ(D) − Γ(E)

]∥∥∥∥
=

∥∥∥∥(Γ(B)T ⊗ R(A)
)

Vc(R(X)) +
(
Γ(D)T ⊗ R(C)

)
Vc

(
R(XT )

)
− Vc(Γ(E))

∥∥∥∥ .
By Lemma 3.2, we have
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Vc(Γ(XT )) = P(n, 4p)(P(4, p) ⊗ In) Vc(Γ(X)),
Vc(Θ(XT )) = P(n, 4p)(P(4, p) ⊗ In) Vc(Θ(X)),
Vc(∆(XT )) = P(n, 4p)(P(4, p) ⊗ In) Vc(∆(X)),
Vc(Φ(XT )) = P(n, 4p)(P(4, p) ⊗ In) Vc(Φ(X)).

Using Lemma 3.3, we compute(
Γ(B)T ⊗ R(A)

)
Vc(R(X)) +

(
Γ(D)T ⊗ R(C)

)
Vc

(
R(XT )

)
− Vc(Γ(E))

=
(
Γ(B)T ⊗ R(A)

)
Vc(R(X)) +

(
Γ(D)T ⊗ R(C)

) 
P(n, 4p)(P(4, p) ⊗ In) Vc(Γ(X))
P(n, 4p)(P(4, p) ⊗ In) Vc(Θ(X))
P(n, 4p)(P(4, p) ⊗ In) Vc(∆(X))
P(n, 4p)(P(4, p) ⊗ In) Vc(Φ(X))


− Vc(Γ(E))

= (Γ(B)T ⊗ R(A))


Vc(Γ(X))
Vc(Θ(X))
Vc(∆(X))
Vc(Φ(X))


+ (Γ(D)T ⊗ R(C))(I4 ⊗ P(n, 4p)(P(4, p) ⊗ In))


Vc(Γ(X))
Vc(Θ(X))
Vc(∆(X))
Vc(Φ(X))

 − Vc(Γ(E))

=
[(
Γ(B)T ⊗ R(A)

)
+

(
Γ(D)T ⊗ R(C)

)
(I4 ⊗ P(n, 4p)(P(4, p) ⊗ In))

] 
Vc(Γ(X))
Vc(Θ(X))
Vc(∆(X))
Vc(Φ(X))

 − Vc(Γ(E))

=
[(
Γ(B)T ⊗ R(A)

)
+

(
Γ(D)T ⊗ R(C)

)
(I4 ⊗ P(n, 4p)(P(4, p) ⊗ In))

]
MVc(Γ(X)) − Vc(Γ(E))

= WMVc(Γ(X)) − Vc(Γ(E)).

So, the generalized quaternion matrix Eq (3.1) is equivalent to a real linear system

WMVc(Γ(X)) = Vc(Γ(E)). (3.9)

By Lemma 3.1, the system (3.9) has the general solution

Vc(Γ(X)) = (WM)†Vc(Γ(E)) + [I4np − (WM)†(WM)]y,

where y ∈ R4np is an arbitrary vector. The assertions (iii) and (iv) now follow from Lemma 3.1.

Theorem 3.5. Consider Eq (3.1). Let Y ∈ Qn×p
u,v be given. Then Problem 1.2 is equivalent to finding the

minimal-norm solution Z ∈ Qn×p
u,v of a matrix equation

AZB +CZT D = Ê,

where Ê = E − (AYB +CYT D).
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Proof. Letting Z = X − Y , we consider the following error

AXB +CXT D − E = AXB +CXT D − E − AYB −CYT D + AYB +CYT D

= A(X − Y)B +C(XT − YT )D − E + AYB +CYT D

= AZB +CZT D − Ê.

Thus, Problem 1.2 is equivalent to the following minimization:

min
AXB+CXT D = E

∥X − Y∥ = min
AXB+CXT D = E

∥Z∥

= min
AZB+CZT D = Ê

∥Z∥ ,

as desired.

4. Inconsistent generalized Sylvester-transpose matrix equation

In this section, we investigate Eq (3.2) when it is inconsistant. We seek for least-squares (LS)
solutions with minimal-norm or the closest solution to a given matrix. Recall the following result:

Lemma 4.1. [37] Consider the linear system (3.2) in the inconsistent case. We have the following:

(i) The general LS solutions of Eq (3.2) are given by (3.3), where y ∈ R4np is an arbitrary vector.
(ii) Among such LS solutions, the minimal-norm solution is given by (3.4).

(iii) If rank(K) = 4np, then the system (3.2) has a unique LS solution given by (3.4).

Theorem 4.2. Suppose that Eq (3.2) is inconsistent. DenoteW as in (3.6).

(i) Then the solution set L of Problem 1.3 can be expressed as

L =

{
X

∣∣∣ Vc(Γ(X)) = (WM)†Vc(Γ(E)) +
[
I4np − (WM)†(WM)

]
y
}
, (4.1)

where y ∈ R4np is an arbitrary vector.
(ii) Among such solutions (4.1), the minimal-norm solution is given by (3.8).

(iii) Moreover, if rank(WS) = 4np, Eq (3.1) has a unique LS solution given by (3.8).

Proof. From the proof of Theorem 3.4, we see that Eq (3.1) is equivalent to the real linear system (3.9).
Lemma 4.1 now implies that the LS solutions of Eq (3.1) are given by

Vc(Γ(X)) = (WM)†Vc(Γ(E)) + [I4np − (WM)†(WM)]y,

where y ∈ R4np is an arbitrary vector. The assertions (ii) and (iii) also follow from Lemma 4.1.

Theorem 4.3. Consider Eq (3.1). Let Y ∈ Qn×p
u,v be given. Then Problem 1.4 is equivalent to finding the

minimal-norm least-squares solution Z ∈ Qn×p
u,v G of a matrix equation

AZB +CZT D = Ê,

where Ê = E − (AYB +CYT D).
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Proof. From the proof of Theorem 3.5, we have∥∥∥AXB +CXT D − E
∥∥∥ = ∥∥∥AZB +CZT D − Ê

∥∥∥ ,
where Z = X − Y . Thus, Problem 1.4 is equivalent to the following:

min
X∈L
∥X − Y∥ = min

∥AXB+CXT D−E∥ = min
∥X − Y∥

= min
∥AXB+CXT D−E∥ = min

∥Z∥

= min
∥AZB+CZT D−Ê∥ = min

∥Z∥ ,

as desired.

5. Special cases

From the Sylvester-transpose Eq (1.2), we can investigate its certain special cases.

5.1. Matrix equations

Corollary 5.1. Let A ∈ Qm×n
u,v , B ∈ Q

p×q
u,v , and E ∈ Qm×q

u,v . Consider the matrix equation

AXB = E

in an unknown X ∈ Qn×p
u,v . Then the conclusions of Theorems 3.4, 3.5, 4.2 and 4.3 hold, where the matrix

W is given by

W = Γ(B)T ⊗ R(A).

Proof. We set C = 0 and D = 0 in those theorems.

The next special case is the Sylvester-transpose matrix equation

AX + XT D = E. (5.1)

Corollary 5.2. Let A ∈ Qp×n
u,v ,D ∈ Q

n×p
u,v , and E ∈ Qp×p

u,v . Consider Eq (5.1) in an unknown X ∈ Qn×p
u,v .

Then the conclusions of Theorems 3.4, 3.5, 4.2 and 4.3 hold, where

W =
(
Γ(Ip) ⊗ R(A)

)
+

(
Γ(D)T ⊗ I4p

)
(I4 ⊗ P(n, 4p)(P(4, p) ⊗ In)).

Proof. We set B = C = Ip in those theorems.

In the next result, we consider Eq (1.2) over the quaternions.

Corollary 5.3. Let A ∈ Qm×n,B ∈ Qp×q,C ∈ Qm×p,D ∈ Qn×q, and E ∈ Qm×q. Consider the matrix equation

AXB +CXT D = E.
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Then the conclusions of Theorems 3.4, 3.5, 4.2 and 4.3 hold, where the matrixM is given explicitly by

M =


I4np

Ip ⊗ ŔP

Ip ⊗ Ś P

Ip ⊗ T́P

 ∈ R16np×4np, (5.2)

and

Ŕp =


0 −In 0 0
In 0 0 0
0 0 0 In

0 0 −In 0

 , Ś p =


0 0 −In 0
0 0 0 −In

In 0 0 0
0 In 0 0

 , T́p =


0 0 0 −In

0 0 In 0
0 −In 0 0
In 0 0 0

 .
Proof. Set u = v = −1 in those theorems.

5.2. Linear systems over the quaternions

In this subsection, we consider a quaternion linear system

Ax = b, (5.3)

where A ∈ Qm×n and b ∈ Qm are given, and x ∈ Qn is an unknown.

Corollary 5.4. Consider the linear system (5.3). DenoteM as in (5.2) where p = 1.

(i) Then the system (5.3) has a solution if and only if(
R(A)M

)(
R(A)M

)†
Γ(b) = Γ(b).

(ii) The general exact/LS solution of Eq (5.3) can be expressed as

Γ(x) =
(
R(A)M

)†
Γ(b) +

[
I4n −

(
R(A)M

)†(
R(A)M

)]
y, (5.4)

where y ∈ R4n is an arbitrary vector.
(iii) Among all solutions (5.4), the minimal-norm solution is given by

Γ(x) =
(
R(A)M

)†
Γ(b). (5.5)

(iv) When R(A)M is of full-column rank, Eq (5.3) has a unique exact/LS solution given by (5.5).

Proof. From Theorems 3.4 and 4.2, set p = 1, B = I1, and C = 0.

A conjugate gradient type to solve the quaternion linear system (5.3) is the quaternion generalized
minimal residual method (QGMRES) [38]. Now, we discuss the following problem.

Problem 5.5. Let A ∈ Qm×n and b ∈ Qm be given. Find an LS solution of Eq (5.3) closest to a given
vector h ∈ Qn. That is, find the vector x̃ such that

∥x̃ − h∥ = min
∥Ax−b∥ = min

∥x − h∥ .
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Corollary 5.6. Consider Eq (5.3). Let h ∈ Qn be given. Then the solution of Problem 5.5 is given by
x = h + z where

Γ(z) =
(
R(A)M

)†[
Γ(b) − R(A)Γ(h)

]
.

Here, the matrixM is given by (5.2) where p = 1.

Proof. From the case B = 1 and C = 0 in Theorem 4.3, we see that Problem 5.5 is equivalent to finding
a minimal-norm LS solution z of the linear system

Az = b − Ah.

Indeed, the desired solution is x = h + z. From Corollary 5.4 and Eq (2.1), we obtain

Γ(z) =
(
R(A)M

)†
Γ(b − Ah)

=
(
R(A)M

)†[
Γ(b) − R(A)Γ(h)

]
.

6. Numerical examples

In this section, we provide numerical examples to illustrate our results.

Example 6.1. Consider the generalized Sylvester-transpose matrix equation AXB +CXT D = E over
the split quaternions (i.e., (u, v) = (−1, 1)),

A =
(
1 i + 2 j

)
1×2
, C =

(
−1 −i + j + k

)
1×2
,

B =
(

i + k
2 + 3 j

)
2×1, D =

(
2i

3 − k

)
2×1

, E =
(
−1 + 4i + 3 j + k

)
1×1
.

Then we have

R(A) =


1 0 0 −1 0 2 0 0
0 1 1 0 0 0 0 −2
0 2 0 0 1 0 0 −1
0 0 0 −2 0 1 1 0

 , Γ(B)T =
(
0 2 1 0 0 −3 1 0

)
,

R(C) =


−1 0 0 1 0 −1 0 0
0 −1 −1 0 0 0 0 −1
0 1 0 0 −1 0 0 1
0 0 0 −1 0 −1 −1 0

 , Γ(D)T =
(
0 3 2 0 0 0 0 −1

)
,

and

W =
(
Γ(B)T ⊗ R(A)

)
+

(
Γ(D)T ⊗ R(C)

)
,

M = I4 ⊗ P(2, 8)
(

P(4, 2) ⊗ I2

)
, Γ(E) =

(
−1 4 3 1

)T
.
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According to Theorem 3.4, the matrix equation has a unique solution, computed via MATLAB
as follows:

X =
(
0 0
0 −0.2709

)
+

(
0 0
0 0.0739

)
i +

(
0 0
0 −0.8079

)
j +

(
0 0
0 −0.8079

)
k.

Example 6.2. Consider the matrix equation AXB +CXT D = E over the split quaternions, i.e., (u, v) =
(−1, 1). Here, we are given the matrices A, B,C,D, and E as in Example 6.1, and we will find a solution
X closest to a given matrix

Y =
(
1 0
0 −i

)
.

We obtain

Ê = E − (AYB +CYT D) and Γ(Ê) =
(
−2 4 2 −8

)T
.

Using Theorem 3.5 and MATLAB, we obtain:

Z =
(
0 0
0 0.3481

)
+

(
0 0
0 0.6404

)
i +

(
0 0
0 0.3350

)
j +

(
0 0
0 −0.1938

)
k.

Thus, we get the desired solution:

X = Z + Y =
(
1 0
0 0.3481

)
+

(
0 0
0 −0.3596

)
i +

(
0 0
0 0.3350

)
j +

(
0 0
0 −0.1938

)
k.

7. Conclusions

We investigated a generalized Sylvester-transpose matrix equation AXB + CXT D = E, where
A, B,C,D, E, and X are matrices over a generalized quaternion skew-field. When all matrix dimensions
were compatible, we provided a criterion for the equation to have a solution, involving Moore-Penrose
inverses of associated matrices. Applying vectorizations and real representations of generalized quater-
nion matrices, we derived formulas of general exact/least-squares solutions, the minimal-norm solution,
and the solution closest to a given matrix. Our results included the equation AXB = E and the
Sylvester-transpose equation, quaternionic matrix equations, and quaternionic linear systems.
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