Research article Special Issues

Nontrivial solutions for a Hadamard fractional integral boundary value problem

  • Received: 25 January 2024 Revised: 02 March 2024 Accepted: 06 March 2024 Published: 13 March 2024
  • In this paper, we studied a Hadamard-type fractional Riemann-Stieltjes integral boundary value problem. The existence of nontrivial solutions was obtained by using the fixed-point method when the nonlinearities can be superlinear, suberlinear, and have asymptotic linear growth. Our results improved and generalized some results of the existing literature.

    Citation: Keyu Zhang, Qian Sun, Jiafa Xu. Nontrivial solutions for a Hadamard fractional integral boundary value problem[J]. Electronic Research Archive, 2024, 32(3): 2120-2136. doi: 10.3934/era.2024096

    Related Papers:

  • In this paper, we studied a Hadamard-type fractional Riemann-Stieltjes integral boundary value problem. The existence of nontrivial solutions was obtained by using the fixed-point method when the nonlinearities can be superlinear, suberlinear, and have asymptotic linear growth. Our results improved and generalized some results of the existing literature.



    加载中


    [1] M. El-Shahed, Positive solutions for boundary value problem of nonlinear fractional differential equation, Abstr. Appl. Anal., 2007 (2007), 010368. https://doi.org/10.1155/2007/10368 doi: 10.1155/2007/10368
    [2] Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal. Theory Methods Appl., 72 (2010), 916–924. https://doi.org/10.1016/j.na.2009.07.033 doi: 10.1016/j.na.2009.07.033
    [3] F. Haddouchi, Positive solutions of nonlocal fractional boundary value problem involving Riemann-Stieltjes integral condition, J. Appl. Math. Comput., 64 (2020), 487–502. https://doi.org/10.1007/s12190-020-01365-0 doi: 10.1007/s12190-020-01365-0
    [4] M. Khuddush, K. R. Prasad, P. Veeraiah, Infinitely many positive solutions for an iterative system of fractional BVPs with multistrip Riemann-Stieltjes integral boundary conditions, Afr. Mat., 33 (2022), 91. https://doi.org/10.1007/s13370-022-01026-4 doi: 10.1007/s13370-022-01026-4
    [5] L. Liu, D. Min, Y. Wu, Existence and multiplicity of positive solutions for a new class of singular higher-order fractional differential equations with Riemann-Stieltjes integral boundary value conditions, Adv. Differ. Equations, 2020 (2020), 442. https://doi.org/10.1186/s13662-020-02892-7 doi: 10.1186/s13662-020-02892-7
    [6] R. Luca, Existence and multiplicity of positive solutions for a singular Riemann-Liouville fractional differential problem, Filomat, 34 (2020), 3931–3942. https://doi.org/10.2298/FIL2012931L doi: 10.2298/FIL2012931L
    [7] S. Padhi, J. R. Graef, S. Pati, Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions, Fract. Calc. Appl. Anal., 21 (2018), 716–745. https://doi.org/10.1515/fca-2018-0038 doi: 10.1515/fca-2018-0038
    [8] W. Wang, J. Ye, J. Xu, D. O'Regan, Positive solutions for a high-order riemann-liouville type fractional integral boundary value problem involving fractional derivatives, Symmetry, 14 (2022), 2320. https://doi.org/10.3390/sym14112320 doi: 10.3390/sym14112320
    [9] Y. Wang, L. Liu, Y. Wu, Positive solutions for a nonlocal fractional differential equation, Nonlinear Anal. Theory Methods Appl., 74 (2011), 3599–3605. https://doi.org/10.1016/j.na.2011.02.043 doi: 10.1016/j.na.2011.02.043
    [10] X. Zhang, L. Wang, Q. Sun, Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter, Appl. Math. Comput., 226 (2014), 708–718. https://doi.org/10.1016/j.amc.2013.10.089 doi: 10.1016/j.amc.2013.10.089
    [11] W. Yang, Positive solutions for a class of nonlinear $p$-Laplacian Hadamard fractional differential systems with coupled nonlocal Riemann-Stieltjes integral boundary conditions, Filomat, 36 (2022), 6631–6654. https://doi.org/10.2298/FIL2219631Y doi: 10.2298/FIL2219631Y
    [12] F. Y. Deren, T. S. Cerdik, Extremal positive solutions for Hadamard fractional differential systems on an infinite interval, Mediterr. J. Math., 20 (2023), 158. https://doi.org/10.1007/s00009-023-02369-3 doi: 10.1007/s00009-023-02369-3
    [13] M. I. Abbas, M. Fečkan, Investigation of an implicit Hadamard fractional differential equation with Riemann-Stieltjes integral boundary condition, Math. Slovaca, 72 (2022), 925–934. https://doi.org/10.1515/ms-2022-0063 doi: 10.1515/ms-2022-0063
    [14] P. Yang, C. Yang, The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative, AIMS Math., 8 (2023), 11837–11850. https://doi.org/10.3934/math.2023599 doi: 10.3934/math.2023599
    [15] W. Yang, Positive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Nonlinear Sci. Appl., 8 (2015), 110–129. https://doi.org/10.22436/jnsa.008.02.04 doi: 10.22436/jnsa.008.02.04
    [16] M. I. Abbas, Existence and uniqueness results for Riemann-Stieltjes integral boundary value problems of nonlinear implicit Hadamard fractional differential equations, Asian-Eur. J. Math., 15 (2022), 2250155. https://doi.org/10.1142/S1793557122501558 doi: 10.1142/S1793557122501558
    [17] I. A. Arik, S. I. Araz, Delay differential equations with fractional differential operators: Existence, uniqueness and applications to chaos, Commun. Anal. Mech., 16 (2024), 169–192. https://doi.org/10.3934/cam.2024008 doi: 10.3934/cam.2024008
    [18] W. Xiao, X. Yang, Z. Zhou, Pointwise-in-time $ \alpha $-robust error estimate of the adi difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, Commun. Anal. Mech., 16 (2024), 53–70. https://doi.org/10.3934/cam.2024003 doi: 10.3934/cam.2024003
    [19] V. Ambrosio, Concentration phenomena for a fractional relativistic schrödinger equation with critical growth, Adv. Nonlinear Anal., 13 (2024), 20230123. https://doi.org/10.1515/anona-2023-0123 doi: 10.1515/anona-2023-0123
    [20] M. G. Kreĭn, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl., 1950 (1950), 128. Available from: https://api.semanticscholar.org/CorpusID: 118778929.
    [21] D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Inc., Boston, MA, 1988. https://doi.org/10.1016/C2013-0-10750-7
    [22] P. Zabreiko, M. Krasnoselskii, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984. https://doi.org/10.1007/978-3-642-69409-7
    [23] Z. Yang, Existence and nonexistence results for positive solutions of an integral boundary value problem, Nonlinear Anal., 65 (2006), 1489–1511. https://doi.org/10.1016/j.na.2005.10.025 doi: 10.1016/j.na.2005.10.025
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(534) PDF downloads(41) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog