Research article Special Issues

The effect of innovation performance on the adoption of human resources analytics in business organizations

  • Received: 02 October 2023 Revised: 15 December 2023 Accepted: 08 January 2024 Published: 25 January 2024
  • Our study objective is to examine the determinants that influence the adoption of human resource (HR) analytics, along with the influence of the external variable called Innovation Performance. The research model was developed by adapting the theoretical model of the unified theory of the acceptance and use of technology (UTAUT) by adding the external variable, Innovation Performance. The data was collected using a survey at Amazon Mechanical Turk (MTurk) in the USA. Initially, a total of 602 responses were obtained. Finally, a total of 554 questionnaires were obtained after using information quality filters for debugging. This study reveals that the main influence on the adoption of HR analytics is exerted by performance expectancy, social influence, facilitating conditions, and innovation performance on behavioral intention. Likewise, facilitating conditions, innovative performance, and behavior intention are the major influences for Use Behavior. This was found from an empirical analysis using the generalized structured component analysis (GSCA) software package that shows, with tabled data, the major relationships of the research model. This research into the use of HR Analytics investigated the standard determinants of UTAUT and the Innovation Performance external variable, that influence the adoption of HR analytics in business organization.

    Citation: Eithel F. Bonilla-Chaves, Pedro R. Palos-Sánchez, José A. Folgado-Fernández, Jorge A. Marino-Romero. The effect of innovation performance on the adoption of human resources analytics in business organizations[J]. Electronic Research Archive, 2024, 32(2): 1126-1144. doi: 10.3934/era.2024054

    Related Papers:

  • Our study objective is to examine the determinants that influence the adoption of human resource (HR) analytics, along with the influence of the external variable called Innovation Performance. The research model was developed by adapting the theoretical model of the unified theory of the acceptance and use of technology (UTAUT) by adding the external variable, Innovation Performance. The data was collected using a survey at Amazon Mechanical Turk (MTurk) in the USA. Initially, a total of 602 responses were obtained. Finally, a total of 554 questionnaires were obtained after using information quality filters for debugging. This study reveals that the main influence on the adoption of HR analytics is exerted by performance expectancy, social influence, facilitating conditions, and innovation performance on behavioral intention. Likewise, facilitating conditions, innovative performance, and behavior intention are the major influences for Use Behavior. This was found from an empirical analysis using the generalized structured component analysis (GSCA) software package that shows, with tabled data, the major relationships of the research model. This research into the use of HR Analytics investigated the standard determinants of UTAUT and the Innovation Performance external variable, that influence the adoption of HR analytics in business organization.



    加载中


    [1] J. A. Marino-Romero, P. R. Palos-Sánchez, F. Velicia-Martín, Evolution of digital transformation in SMEs management through a bibliometric analysis, Technol. Forecast. Soc. Change, 199 (2024), 123014. https://doi.org/10.1016/j.techfore.2023.123014 doi: 10.1016/j.techfore.2023.123014
    [2] P. Brazo, F. Velicia-Martín, P. R. Palos-Sanchez, R. G. Rodrigues, The effect of coercive digitization on organizational performance: How information resource management consulting can play a supporting role, J. Global Inf. Manage., 31 (2023), 1–23. https://doi.org/10.4018/JGIM.326282 doi: 10.4018/JGIM.326282
    [3] S. Strohmeier, Digital human resource management: A conceptual clarification, Ger. J. Hum. Resour. Manage., 34 (2020), 345–365. https://doi.org/10.1177/2397002220921131 doi: 10.1177/2397002220921131
    [4] J. A. Marino-Romero, P. R. Palos-Sanchez, F. A. Velicia-Martin, R. G. Rodrigues, A study of the factors which influence digital transformation in Kibs companies, Front Psychol., 13 (2022), 993972. https://doi.org/10.3389/fpsyg.2022.993972 doi: 10.3389/fpsyg.2022.993972
    [5] J. H. Marler, J. W. Boudreau, An evidence-based review of HR Analytics, Int. J. Human Resour. Manage., 28 (2017), 3–26. https://doi.org/10.1080/09585192.2016.1244699 doi: 10.1080/09585192.2016.1244699
    [6] D. Minbaeva, Disrupted HR?, Hum. Resour. Manage. Review., 31 (2021), 100820. https://doi.org/10.1016/j.hrmr.2020.100820 doi: 10.1016/j.hrmr.2020.100820
    [7] P. Ficapal-Cusí, J. Torrent-Sellens, P. Palos-Sanchez, I. González-González, The telework performance dilemma: Exploring the role of trust, social isolation and fatigue, Int. J. Manpower, preprint. https://doi.org/10.1108/IJM-08-2022-0363
    [8] P. Palos-Sánchez, P. Baena-Luna, M. García-Ordaz, F. J. Martínez-López, Digital transformation and local government response to the COVID-19 pandemic: An assessment of its impact on the sustainable development goals, SAGE Open, 13 (2023). https://doi.org/10.1177/21582440231167343 doi: 10.1177/21582440231167343
    [9] P. Dahlbom, N. Siikanen, P. Sajasalo, M. Jarvenpä, Big data and HR analytics in the digital era, Baltic J. Manage., 15 (2020), 120–138. https://doi.org/10.1108/BJM-11-2018-0393 doi: 10.1108/BJM-11-2018-0393
    [10] V. Shet Sateesh, T. Poddar, F. Wamba Samuel, Y. K. Dwivedi, Examining the determinants of successful adoption of data analytics in human resource management–A framework for implications, J. Bus. Res., 131 (2021), 311–326. https://doi.org/10.1016/j.jbusres.2021.03.054 doi: 10.1016/j.jbusres.2021.03.054
    [11] D. Minbaeva, Building credible human capital analytics for organizational competitive advantage, Hum. Resour. Manage., 57 (2018), 701–713. https://doi.org/10.1002/hrm.21848 doi: 10.1002/hrm.21848
    [12] P. Palos-Sanchez, J. R.Saura, The effect of internet searches on afforestation: The case of a green search engine, Forests, 9 (2018), 51. https://doi.org/10.3390/f9020051 doi: 10.3390/f9020051
    [13] M. R. Sánchez, P. Palos-Sánchez, F. Velicia-Martin, Eco-friendly performance as a determining factor of the adoption of virtual reality applications in national parks, Sci. Total Environ., 798 (2021), 148990. https://doi.org/10.1016/j.scitotenv.2021.148990 doi: 10.1016/j.scitotenv.2021.148990
    [14] E. F. Bonilla-Chaves, P. Palos-Sánchez, Exploring the evolution of human resource analytics: A bibliometric study, Behav. Sci., 13 (2023), 244. https://doi.org/10.3390/bs13030244 doi: 10.3390/bs13030244
    [15] E. F. Bonilla-Chaves, P. Palos-Sánchez, Strategic HRM Practices, innovation performance and its relationship on export performance: An exploratory study of SMEs in an emerging economy, in Perspectives and Trends in Education and Technology, Springer, (2022), 607–620.
    [16] R. Vargas, Y. V. Yurova, C. P. Ruppel, Leslie C. Tworoger, R. Greenwood, Individual adoption of HR analytics: A fine grained view of the early stages leading to adoption, Int. J. Hum. Res. Manage., 29 (2018), 3046–3067. https://doi.org/10.1080/09585192.2018.1446181 doi: 10.1080/09585192.2018.1446181
    [17] Z. Yuan, X. Deng, T. Ding, J. Liu, Q. Tan, Factors influencing secondary school teachers' usage behavior of dynamic mathematics software: A partial least squares structural equation modeling (PLS-SEM) method, Electron. Res. Arch., 31(2023), 5649–5684. https://doi.org/10.3934/era.2023287 doi: 10.3934/era.2023287
    [18] X. Tang, Z. Yuan, X. Deng, L. Xiang, Predicting secondary school mathematics teachers' digital teaching behavior using partial least squares structural equation modeling, Electron. Res. Arch., 31 (2023), 6274–6302. https://doi.org/10.3934/era.2023318 doi: 10.3934/era.2023318
    [19] F. Gimeno-Arias, J. M. Santos-Jaén, M. del C. V. Martínez, M. Sánchez-Pérez, From trust and dependence commitment to B2B engagement: An empirical analysis of inter-organizational cooperation in FMCG, Electron. Res. Arch., 31 (2023), 7511–7543. https://doi.org/10.3934/era.2023379 doi: 10.3934/era.2023379
    [20] H. Hwang, Y. Takane, Generalized structured component analysis, Psychometrika, 69 (2004), 81–99. https://doi.org/10.1007/BF02295841 doi: 10.1007/BF02295841
    [21] V. Fernandez, E. Gallardo-Gallardo, Tackling the HR digitalization challenge: Key factors and barriers to HR analytics adoption, Competitiveness Rev. Int. Bus. J., 31 (2020), 162–187. https://doi.org/10.1108/CR-12-2019-0163 doi: 10.1108/CR-12-2019-0163
    [22] A. Margherita, Human resources analytics: A systematization of research topics and directions for future research, Hum. Res. Manage. Rev., 32 (2022), 100795. https://doi.org/10.1016/j.hrmr.2020.100795 doi: 10.1016/j.hrmr.2020.100795
    [23] B. Ramzi, M. Elrayah, The reasons that affect the implementation of HR analytics among HR professionals, Can. J. Bus. Inf. Stud., 3 (2021), 29–37. https://doi.org/10.34104/cjbis.021.029037 doi: 10.34104/cjbis.021.029037
    [24] M. Arora, A. Prakash, A. Mittal, S. Singh, Moderating role of resistance to change in the actual adoption of HR analytics in the Indian banking and financial services industry, Evid. Based HRM, 11 (2022), 253–270. https://doi.org/10.1108/EBHRM-12-2021-0249 doi: 10.1108/EBHRM-12-2021-0249
    [25] S. Ekka, P. Singh, Predicting HR Professionals' Adoption of HR Analytics: An extension of UTAUT model, Organizacija, 55 (2022), 77–93. https://doi.org/10.2478/orga-2022-0006 doi: 10.2478/orga-2022-0006
    [26] T. Peisl, R. Edlmann, Exploring technology acceptance and planned behaviour by the adoption of predictive hr analytics during recruitment, in Systems, Software and Services Process Improvement, (Eds. Yilmaz M, Niemann J, Clarke P, et al., ), Springer International Publishing, (2020), 177–190. https://doi.org/10.1007/978-3-030-56441-4_13
    [27] N. D. Oye, N. A. Iahad, N. A. Rahim, The history of UTAUT model and its impact on ICT acceptance and usage by academicians, Educ. Inf. Technol., 19 (2014), 251–270. https://doi.org/10.1007/s10639-012-9189-9 doi: 10.1007/s10639-012-9189-9
    [28] Y. K. Dwivedi, N. P. Rana, A. Jeyaraj, M. Clement, M. D. Williams, Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model, Inf. Syst. Front., 21 (2019). 719–734. https://doi.org/10.1007/s10796-017-9774-y doi: 10.1007/s10796-017-9774-y
    [29] E. Garcia-Rio, P. Palos-Sanchez, P. Baena-Luna, M. Clement, M. D. Williams, Different approaches to analyzing e-government adoption during the Covid-19 pandemic, Gov. Inf. Q., 40 (2023), 101866. https://doi.org/10.1016/j.giq.2023.101866 doi: 10.1016/j.giq.2023.101866
    [30] V. Venkatesh, M. G. Morris, G. B. Davis, F. D. Davis, User acceptance of information technology: Toward a unified view, MIS Q., 27 (2003), 425–478. https://doi.org/10.2307/30036540 doi: 10.2307/30036540
    [31] B. I. Hmoud, L. Várallyai, Artificial intelligence in human resources information systems: Investigating its trust and adoption determinants, Int. J. Eng. Manage. Sci., 5 (2020), 749–765. https://doi.org/10.21791/IJEMS.2020.1.65 doi: 10.21791/IJEMS.2020.1.65
    [32] M. E. Ouirdi, A. E. Ouirdi, J. Segers, I. Pais, Technology adoption in employee recruitment: The case of social media in Central and Eastern Europe, Comput. Hum. Behav., 57 (2016), 240–249. https://doi.org/10.1016/j.chb.2015.12.043 doi: 10.1016/j.chb.2015.12.043
    [33] M. A. Rahman, X. Qi, M. S. Jinnah, Factors affecting the adoption of HRIS by the Bangladeshi banking and financial sector, Cogent Bus. Manage., 3 (2016), 1262107. https://doi.org/10.1080/23311975.2016.1262107 doi: 10.1080/23311975.2016.1262107
    [34] C. C. J. Cheng, E. K. R. E. Huizingh, When is open innovation beneficial? The role of strategic orientation, J. Prod. Innovation Manage., 31 (2014), 1235–1253. https://doi.org/10.1111/jpim.12148 doi: 10.1111/jpim.12148
    [35] S. McCartney, N. Fu, Promise versus reality: A systematic review of the ongoing debates in people analytics, J. Organ. Effect. People Perform., 9 (2022), 281–311. https://doi.org/10.1108/JOEPP-01-2021-0013 doi: 10.1108/JOEPP-01-2021-0013
    [36] H. Aguinis, I. Villamor, R. S. Ramani, MTurk research: Review and recommendations, J. Manage., 47 (2021), 823–837. https://doi.org/10.1177/0149206320969787 doi: 10.1177/0149206320969787
    [37] G. Paolacci, J. Chandler, Inside the Turk: Understanding mechanical turk as a participant pool, Curr. Dir. Psychol. Sci., 23 (2014), 184–188. https://doi.org/10.1177/0963721414531598 doi: 10.1177/0963721414531598
    [38] C. Cobanoglu, M. Cavusoglu, G. Turktarhan, A beginner's guide and best practices for using crowdsourcing platforms for survey research: The case of Amazon Mechanical Turk (MTurk), J. Glob. Bus. Insights., 6 (2021), 92–97. https://doi.org/10.5038/2640-6489.6.1.1177 doi: 10.5038/2640-6489.6.1.1177
    [39] R. Kennedy, C. Scott, T. Burleigh, P. D. Waggoner, R. Jewell, N. J. G. Winter, The shape of and solutions to the MTurk quality crisis, Political Sci. Res. Methods, 8 (2020), 614–629. https://doi.org/10.1017/psrm.2020.6 doi: 10.1017/psrm.2020.6
    [40] M. G. Keith, L. Tay, P. D. Harms, Systems perspective of Amazon mechanical Turk for organizational research: Review and recommendations, Front. Psychol., 8 (2017). https://doi.org/10.3389/fpsyg.2017.01359 doi: 10.3389/fpsyg.2017.01359
    [41] W. Mason, S. Suri, Conducting behavioral research on Amazon's Mechanical Turk, Behav. Res., 44 (2012), 1–23. https://doi.org/10.3758/s13428-011-0124-6 doi: 10.3758/s13428-011-0124-6
    [42] I. E. Allen, C. A. Seaman, Likert scales and data analyses, Qual. Prog., 40 (2007), 64–65.
    [43] H. Hwang, Visual GSCA 1.0–A graphical user interface software program for generalized structured component analysis, New Trends Psychometrics, (2008), 111–120.
    [44] J. Henseler, Why generalized structured component analysis is not universally preferable to structural equation modeling, J. Acad. Mark. Sci., 40 (2012), 402–413.
    [45] V. T. Nguyen, The perceptions of social media users of digital detox apps considering personality traits, Educ. Inf. Technol., 27 (2022), 9293–9316. https://doi.org/10.1007/s10639-022-11022-7 doi: 10.1007/s10639-022-11022-7
    [46] A. B. Saka, D. W. M. Chan, A. M. Mahamadu, Rethinking the digital divide of BIM adoption in the AEC industry, J. Manage. Eng., 38 (2022), 04021092. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000999 doi: 10.1061/(ASCE)ME.1943-5479.0000999
    [47] L. C. Nawangsari, A. H. Sutawidjaya, Talent management in mediating competencies and motivation to improve employee's engagement, Int. J. Econ. Bus. Adm., 7 (2019), 140–152. https://doi.org/10.35808/ijeba/201 doi: 10.35808/ijeba/201
    [48] T. Doleck, P. Bazelais, D. J. Lemay, Social networking and academic performance: A generalized structured component approach, J. Educ. Comput. Res., 56 (2018), 1129–1148. https://doi.org/10.1177/0735633117738281 doi: 10.1177/0735633117738281
    [49] A. Afthanorhan, Z. Awang, M. Mamat, A comparative study between GSCA-SEM and PLS-SEM, MJ J. Stat. Probab., 1 (2016), 63–72.
    [50] H. Hwang, G. Cho, H. Choo, GSCA Pro User's Manual, (2021).
    [51] S. A. Khan, J. Tang, The paradox of human resource analytics: Being mindful of employees, J. General Manage., 42 (2016), 57–66. https://doi.org/10.1177/030630701704200205 doi: 10.1177/030630701704200205
    [52] S. Shrivastava, K. Nagdev, A. Rajesh, Redefining HR using people analytics: The case of Google, Hum. Res. Manage. Int. Dig., 26 (2018), 3–6. https://doi.org/10.1108/HRMID-06-2017-0112 doi: 10.1108/HRMID-06-2017-0112
    [53] J. A. Folgado-Fernández, M. Rojas-Sánchez, P. Palos-Sánchez, A. G. Casablanca-Peña, Can virtual reality become an instrument in favor of territory economy and sustainability?, J. Tourism Serv., 14 (2023), 92–117. https://doi.org/10.29036/jots.v14i26.470 doi: 10.29036/jots.v14i26.470
    [54] J. F. Arenas-Escaso, J. A. Folgado-Fernández, P. Palos-Sánchez, Internet interventions and therapies for addressing the negative impact of digital overuse: A focus on digital free tourism and economic sustainability, BMC Public Health, 24 (2024), 176. https://doi.org/10.1186/s12889-023-17584-6 doi: 10.1186/s12889-023-17584-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1368) PDF downloads(119) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog