Research article

Topological design of continuum structures with global stress constraints considering self-weight loads

  • Received: 26 April 2023 Revised: 13 June 2023 Accepted: 24 June 2023 Published: 05 July 2023
  • This paper proposes an approach for the topological design of continuum structures with global stress constraints considering self-weight loads. The rational approximation of material properties is employed to describe the material distribution for overcoming the parasitic effect for low densities. The structure volume is used as the objective function to be minimized. The local stress constraints for all elements are aggregated into a global stress constraint using the improved P-norm method. A model for the stress-constrained topology optimization of continuum structures considering the self-weight loads is established. The projection filtering method is adopted to avoid numerical instability, and the topology optimization problems are solved using the method of moving asymptotes. Several numerical examples are presented to demonstrate the validity of the proposed method. The structures obtained by the proposed method can have better performance. The effects of different norm parameters, stress constraints and mesh densities on the topological structures are analyzed.

    Citation: Yun Ni, Jinqing Zhan, Min Liu. Topological design of continuum structures with global stress constraints considering self-weight loads[J]. Electronic Research Archive, 2023, 31(8): 4708-4728. doi: 10.3934/era.2023241

    Related Papers:

  • This paper proposes an approach for the topological design of continuum structures with global stress constraints considering self-weight loads. The rational approximation of material properties is employed to describe the material distribution for overcoming the parasitic effect for low densities. The structure volume is used as the objective function to be minimized. The local stress constraints for all elements are aggregated into a global stress constraint using the improved P-norm method. A model for the stress-constrained topology optimization of continuum structures considering the self-weight loads is established. The projection filtering method is adopted to avoid numerical instability, and the topology optimization problems are solved using the method of moving asymptotes. Several numerical examples are presented to demonstrate the validity of the proposed method. The structures obtained by the proposed method can have better performance. The effects of different norm parameters, stress constraints and mesh densities on the topological structures are analyzed.



    加载中


    [1] J. Gao, H. Li, Z. Luo, L. Gao, P. Li, Topology optimization of micro-structured materials featured with the specific mechanical properties, Int. J. Comput. Methods, 17 (2020), 1850144. https://doi.org/10.1142/S021987621850144X doi: 10.1142/S021987621850144X
    [2] B. Yi, K. Saitou, Multicomponent topology optimization of functionally graded lattice structures with bulk solid interfaces, Int. J. Numer. Methods Eng., 122 (2021), 4219–4249. https://doi.org/10.1002/nme.6700 doi: 10.1002/nme.6700
    [3] M. Cui, M. Pan, J. Wang, P. Li, A parameterized level set method for structural topology optimization based on reaction diffusion equation and fuzzy PID control algorithm, Electron. Res. Arch., 30 (2022), 2568–2599. https://doi.org/10.3934/era.2022132 doi: 10.3934/era.2022132
    [4] M. P.Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71 (1988), 197–224. https://doi.org/10.1016/0045-7825(88)90086-2 doi: 10.1016/0045-7825(88)90086-2
    [5] K. Suzuki, N. Kikuchi, A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Eng., 93 (1991), 291–318. https://doi.org/10.1016/0045-7825(91)90245-2 doi: 10.1016/0045-7825(91)90245-2
    [6] O. Sigmund, K. Maute, Topology optimization approaches: A comparative review, Struct. Multidiscip. Optim., 48 (2013), 1031–1055. https://doi.org/10.1007/s00158-013-0978-6 doi: 10.1007/s00158-013-0978-6
    [7] J. Zhan, Y. Sun, M. Liu, B. Zhu, X. Zhang, Multi-material topology optimization of large-displacement compliant mechanisms considering material-dependent boundary condition, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 236 (2022), 2847–2860. https://doi.org/10.1177/09544062211036157 doi: 10.1177/09544062211036157
    [8] G. Allaire, F. Gournay, F. Jouve, A. Toader, Structural optimization using topological and shape sensitivity via a level set method, Control Cybern., 34 (2005), 59–80. https://doi.org/10.1109/AUTEST.2005.1609192 doi: 10.1109/AUTEST.2005.1609192
    [9] H. Li, Z. Luo, L. Gao, Q. Qin, Topology optimization for concurrent design of structures with multi-patch microstructures by level sets, Comput. Methods Appl. Mech. Eng., 331 (2018), 536–561. https://doi.org/10.1016/j.cma.2017.11.033 doi: 10.1016/j.cma.2017.11.033
    [10] X. Huang, Z. H. Zuo, Y. M. Xie, Evolutionary topological optimization of vibrating continuum structures for natural frequencies, Comput. Struct., 88 (2010), 357–364. https://doi.org/10.1016/j.compstruc.2009.11.011 doi: 10.1016/j.compstruc.2009.11.011
    [11] L. Xia, Q. Xia, X. Huang, Y. M. Xie, Bi-directional evolutionary structural optimization on advanced structures and materials: A comprehensive review, Arch. Comput. Methods. Eng., 25 (2016), 437–478. https://doi.org/10.1007/s11831-016-9203-2 doi: 10.1007/s11831-016-9203-2
    [12] X. Guo, W. Zhang, W. Zhong, Doing topology optimization explicitly and geometrically—A new moving morphable components based framework, J. Appl. Mech., 81 (2014), 081009. https://doi.org/10.1115/1.4027609 doi: 10.1115/1.4027609
    [13] J. Gao, Z. Luo, M. Xiao, L. Gao, P. Li, A NURBS-based Multi-Material Interpolation (N-MMI) for isogeometric topology optimization of structures, Appl. Math. Modell., 81 (2020), 818–843. https://doi.org/10.1007/s11465-019-0568-4 doi: 10.1007/s11465-019-0568-4
    [14] S. Turteltaub, P. Washabaugh, Optimal distribution of material properties for an elastic continuum with structure-dependent body force, Int. J. Solids. Struct., 36 (1999), 4587–4608. https://doi.org/10.1016/S0020-7683(98)00201-7 doi: 10.1016/S0020-7683(98)00201-7
    [15] M. Bruyneel, P. Duysinx, Note on topology optimization of continuum structures including self-weight, Struct. Multidiscip. Optim., 29 (2005), 245–256. https://doi.org/10.1007/s00158-004-0484-y doi: 10.1007/s00158-004-0484-y
    [16] R. Ansola, J. Canales, J. A. Tárrago, An efficient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads, Finite Elem. Anal. Des., 42 (2006), 1220–1230. https://doi.org/10.1016/j.finel.2006.06.001 doi: 10.1016/j.finel.2006.06.001
    [17] E. Holmberg, C. J. Thore, A. Klarbring, Worst-case topology optimization of self-weight loaded structures using semi-definite programming, Struct. Multidiscip. Optim., 52 (2015), 915–928. https://doi.org/10.1007/s00158-015-1285-1 doi: 10.1007/s00158-015-1285-1
    [18] H. Xu, L. Guan, X. Chen, X. Chen, Guide-Weight method for topology optimization of continuum structures including body forces, Finite Elem. Anal. Des., 75 (2013), 38–49. https://doi.org/10.1016/j.finel.2013.07.002 doi: 10.1016/j.finel.2013.07.002
    [19] N. Jain, R. Saxena, Effect of self-weight on topological optimization of static loading structures, Alexandria Eng. J., 57 (2018), 527–535. https://doi.org/10.1016/j.aej.2017.01.006 doi: 10.1016/j.aej.2017.01.006
    [20] S. Zhang, H. Li, Y. Huang, An improved multi-objective topology optimization model based on SIMP method for continuum structures including self-weight, Struct. Multidiscip. Optim., 63 (2021), 211–230. https://doi.org/10.1007/s00158-020-02685-2 doi: 10.1007/s00158-020-02685-2
    [21] Y. Han, B. Xu, Q. Wang, Y. Liu, Bi-directional evolutionary topology optimization of continuum structures subjected to inertial loads, Adv. Eng. Software, 155 (2021), 102897. https://doi.org/10.1016/j.advengsoft.2020.102897 doi: 10.1016/j.advengsoft.2020.102897
    [22] X. Yang, Y. Xie, G. P. Steven, Evolutionary methods for topology optimisation of continuous structures with design dependent loads, Comput. Struct., 83 (2005), 956–963. https://doi.org/10.1016/j.compstruc.2004.10.011 doi: 10.1016/j.compstruc.2004.10.011
    [23] A. A. Novotny, C. G. Lopes, R. B. Santos, Topological derivative-based topology optimization of structures subject to self-weight loading, Struct. Multidiscip. Optim., 63 (2021), 1853–1861. https://doi.org/10.1007/s00158-020-02780-4 doi: 10.1007/s00158-020-02780-4
    [24] P. Duysinx, M. P. Bendsøe, Topology optimization of continuum structures with local stress constraints, Int. J. Numer. Methods Eng., 43 (1998), 1453–1478. https://doi.org/10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2 doi: 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
    [25] Z. Fan, L. Xia, W. Lai, Q. Xia, T. Shi, Evolutionary topology optimization of continuum structures with stress constraints, Struct. Multidiscip. Optim., 59 (2019), 647–658. https://doi.org/10.1007/s00158-018-2090-4 doi: 10.1007/s00158-018-2090-4
    [26] Y. Han, Q. Wang, Numerical simulation of stress-based topological optimization of continuum structures under casting constraints, Eng. Comput., 38 (2022), 4919–4945. https://doi.org/10.1007/s00366-021-01512-6 doi: 10.1007/s00366-021-01512-6
    [27] G. Cheng, X. Guo, ε-relaxed approach in structural topology optimization, Struct. Multidiscip. Optim., 13 (1997), 258–266. https://doi.org/10.1007/BF01197454 doi: 10.1007/BF01197454
    [28] M. Bruggi, On an alternative approach to stress constraints relaxation in topology optimization, Struct. Multidiscip. Optim., 36 (2008), 125–141. https://doi.org/10.1007/s00158-007-0203-6 doi: 10.1007/s00158-007-0203-6
    [29] L. Xia, L. Zhang, Q. Xia, T. Shi, Stress-based topology optimization using bi-directional evolutionary structural optimization method, Comput. Methods Appl. Mech. Eng., 333 (2018), 356–370. https://doi.org/10.1016/j.cma.2018.01.035 doi: 10.1016/j.cma.2018.01.035
    [30] Y. Han, B. Xu, Z. Duan, X. Huang, Stress-based topology optimization of continuum structures for the elastic contact problems with friction, Struct. Multidiscp. Optim., 65 (2022), 54. https://doi.org/10.1007/s00158-022-03169-1 doi: 10.1007/s00158-022-03169-1
    [31] R. Yang, C. Chen, Stress-based topology optimization, Struct. Multidiscip. Optim, 12 (1996), 98–105. https://doi.org/10.1007/BF01196941 doi: 10.1007/BF01196941
    [32] C. Le, J. Norato, T. Bruns, C. Ha, D. Tortorelli, Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41 (2010), 605–620. https://doi.org/10.1007/s00158-009-0440-y doi: 10.1007/s00158-009-0440-y
    [33] K. Long, X. Wang, H. Liu, Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming, Struct. Multidiscip. Optim., 59 (2019), 1747–1759. https://doi.org/10.1007/s00158-018-2159-0 doi: 10.1007/s00158-018-2159-0
    [34] J. Zhan, Y. Li, Z. Luo, M. Liu. Topological design of multi-material compliant mechanisms with global stress constraints, Micromachines, 12 (2021), 1379. https://doi.org/10.3390/ mi12111379 doi: 10.3390/mi12111379
    [35] Q. Meng, B. Xu, C. Wang, L. Zhao, Stress constrained thermo-elastic topology optimization based on stabilizing control schemes, J. Therm. Stresses, 43 (2020), 1040–1068. https://doi.org/10.1080/01495739.2020.1766391 doi: 10.1080/01495739.2020.1766391
    [36] Y. Han, B. Xu, Z. Duan, X. Huang, Controlling the maximum stress in structural stiffness topology optimization of geometrical and material nonlinear structures, Struct. Multidiscp. Optim., 64 (2021), 3971–3998. https://doi.org/10.1007/s00158-021-03072-1 doi: 10.1007/s00158-021-03072-1
    [37] B. Xu, Y. Han, L. Zhao, Bi-directional evolutionary topology optimization of geometrically nonlinear continuum structures with stress constraints, Appl. Math. Modell., 80 (2020), 771–791. https://doi.org/10.1016/j.apm.2019.12.009 doi: 10.1016/j.apm.2019.12.009
    [38] B. Xu, Y. Han, L. Zhao, Bi-directional evolutionary stress-based topology optimization of material nonlinear structures, Struct. Multidiscp. Optim., 63 (2021), 1287–1305. https://doi.org/10.1007/s00158-020-02757-3 doi: 10.1007/s00158-020-02757-3
    [39] R. B. dos Santos, C. G. Lopes, Topology optimization of structures subject to self-weight loading under stress constraints, Eng. Comput., 39 (2022), 380–394. https://doi.org/10.1108/EC-06-2021-0368 doi: 10.1108/EC-06-2021-0368
    [40] M. Stolpe, K. Svanberg, An alternative interpolation scheme for minimum compliance topology optimization, Struct. Multidiscip. Optim., 22 (2001), 116–124. https://doi.org/10.1007/s001580100129 doi: 10.1007/s001580100129
    [41] E. Andreassen, A. T. Clausen, M. Schevenels, B. S. Lazarov, O. Sigmund, Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43 (2011), 1–16. https://doi.org/10.1007/s00158-010-0594-7 doi: 10.1007/s00158-010-0594-7
    [42] J. Zhan, Y. Sun, M. Liu, B. Zhu, X. Zhang, Multi-material topology optimization of large-displacement compliant mechanisms considering material-dependent boundary condition, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 236 (2022), 2847–2860. https://doi.org/10.1177/09544062211036157. doi: 10.1177/09544062211036157
    [43] F. Wang, B. S. Lazarov, O. Sigmund, J. S. Jensen, Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems, Comput. Methods Appl. Mech. Eng., 276 (2014), 453–472. https://doi.org/10.1016/j.cma.2014.03.021 doi: 10.1016/j.cma.2014.03.021
    [44] E. Holmberg, T. Bo, A. Klarbring, Stress constrained topology optimization, Struct. Multidiscip. Optim., 48 (2013), 33–47. https://doi.org/10.1007/s00158-012-0880-7 doi: 10.1007/s00158-012-0880-7
    [45] K. Lee, K. Ahn, J. Yoo, A novel P-norm correction method for lightweight topology optimization under maximum stress constraints, Comput. Struct., 171 (2016), 18–30. https://doi.org/10.1016/j.compstruc.2016.04.005 doi: 10.1016/j.compstruc.2016.04.005
    [46] K. Svanberg, The method of moving asymptotes—a new method for structural optimization, Int. J. Numer. Methods Eng., 24 (1987), 359–373. https://doi.org/10.1002/nme.1620240207 doi: 10.1002/nme.1620240207
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(984) PDF downloads(76) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog