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Abstract: This paper proposes an approach for the topological design of continuum structures with 
global stress constraints considering self-weight loads. The rational approximation of material 
properties is employed to describe the material distribution for overcoming the parasitic effect for low 
densities. The structure volume is used as the objective function to be minimized. The local stress 
constraints for all elements are aggregated into a global stress constraint using the improved P-norm 
method. A model for the stress-constrained topology optimization of continuum structures considering 
the self-weight loads is established. The projection filtering method is adopted to avoid numerical 
instability, and the topology optimization problems are solved using the method of moving asymptotes. 
Several numerical examples are presented to demonstrate the validity of the proposed method. The 
structures obtained by the proposed method can have better performance. The effects of different norm 
parameters, stress constraints and mesh densities on the topological structures are analyzed. 
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1. Introduction  

Topology optimization is a design technique in which the best material distribution in the design 
domain can be obtained subject to given constraints and prescribed load conditions [1–3]. Since the 
pioneering work of Bendsøe and Kikuchi [4], great progress has been made on topology optimization. 
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A variety of topology optimization methods have been developed, such as the homogenization 
method [5], variable density method [6,7], level set method [8,9], evolutionary structural optimization 
method [10,11], moving morphable component approach [12] and isogeometric method [13]. 

Many studies on topology optimization are performed only considering applied load, and self-
weight loads are rarely considered. In engineering practice, self-weight loads are the primary factor 
for large-scale structures. Therefore, it is necessary that topology optimization of large-scale structures 
is carried out considering self-weight loads. Topology optimization of continuum structures with self-
weight loads was first proposed by Turteltaub et al. [14]. Bruneel et al. [15] noted some challenges 
such as the nonmonotonic behavior of the compliance, the possible unconstrained character of the 
optimum and the parasitic effect for low densities when the solid isotropic material with penalization 
(SIMP) model is used to carry out topology optimization of continuum structures including self-weight 
loads. When the ratio between the self-weight load and the stiffness in low densities is too large, the 
structure itself cannot support the self weight, resulting in large deformation of the region. Erratic 
intermediate density patterns appear in the optimal topology, and the phenomenon is called the 
parasitic effect. Ansola et al. [16] adopted the improved evolutionary structural optimization method 
and the modified sensitivity calculation strategy to perform topology optimization of continuum 
structures considering self-weight loads. Holmberg et al. [17] put forward a method for worst-case 
topology optimization of self-weight loaded structures with semidefinite programming. Xu et al. [18] 
proposed a method for the topological design of continuum structures, including body forces, using 
the guide-weight method. Jain et al. [19] studied the effect of self-weight on optimal configurations 
obtained by topology optimization when the self-weight and applied load are applied. Zhang et al. [20] 
put forward a method for improved multiobjective topology optimization of continuum structures 
including self-weight. Han et al. [21] and Yang et al. [22] adopted the evolutionary structural 
optimization method to carry out topology optimization of continuum structures considering self-
weight loads. Novotny et al. [23] proposed a regularized formulation for topology optimization of 
structures subject to self-weight loading using the topological derivative method. In the 
aforementioned studies, compliance optimization was adopted to design continuum structures 
considering self-weight. The structures obtained by topology optimization with minimum compliance 
usually cannot meet the strength requirement. Therefore, stress constraints should be considered during 
the topological design of continuum structures considering self-weight so that the maximum stress is 
less than the allowable stress. 

However, most works in the literature focus on the topological design of continuum structures 
with stress constraints without considering self-weight loads. Duysinx et al. [24] first proposed a 
topology optimization method of continuum structures with local stress constraints. Compared with 
the stiffness topology optimization, some difficulties occur in the stress-constrained topology 
optimization problem [25,26]. The first is the singularity problem appearing in the variable density 
method. There are high stress values in low-density elements, which make the optimization algorithm 
incapable of eliminating the elements. The singularity problem can be remedied by the ε-relaxation [27] 
method and the p-q approach [28]. The bi-directional evolutionary structural optimization (BESO) 
method can be adopted to avoid the singularity problem [29,30]. The second difficulty is the local 
nature of stress constraints, which lead to a large number of constrains and computationally demanding 
sensitivity evaluation. Global stress strategy such as the Kreisselmeier–Steinhauser (KS) [31] 
functions and the P method [32] are employed to reduce the computational cost. Long et al. [33] 
proposed a method for stress-constrained topology optimization of continuum structures under 
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harmonic excitation using the P method. Zhan et al. [34] performed topological design of multi-
material structures with a global stress constraint. Meng et al. [35] put forward the stabilizing control 
schemes for topology optimization of thermo-elastic structures with stress constraints. Han et al. [36] 
proposed a novel topology optimization method to design geometrical and material nonlinear 
structures with maximum von Mises stress constraints. The third difficulty is the highly nonlinear 
behavior when stress levels are affected by changing topologies, particularly in critical regions such 
as reentrant corners. The density filtering method [37,38] was adopted to alleviate the difficulty. 
Currently, self-weight loads have been seldom considered to perform topology optimization of 
continuum structures with stress constraints. Recently, dos Santos et al. [39] proposed an approach for 
topology optimization of structures with local stress constraints and self-weight loads based on the 
topological derivative method. The number of local stress constraints is large, which may lead to low 
computational efficiency.  

To improve computational efficiency, a new approach for topology optimization of continuum 
structures with a global stress constraint subject to both self-weight loads and mechanical loads is 
proposed in this paper. The rational approximation of material properties is employed to describe the 
material distribution for overcoming the parasitic effect for low densities. The structure volume is 
developed as the objective function to be minimized. The local stress constraints for all elements are 
aggregated into a global stress constraint using the improved P-norm method. The element density is 
employed as an elemental scale factor in the improved P-norm method, which has a positive effect on 
convergence of the stress constrained topology optimization problem. A model for stress-constrained 
topology optimization considering self-weight loads is established. The projection filtering method is 
adopted to avoid the phenomenon of numerical instability, and the optimization problems are solved 
using the method of moving asymptotes.  

The remainder of this paper is organized as follows. In Section 2, the optimization formulation 
for stress-constrained topology optimization of continuum structures considering self-weight loads is 
presented. In Section 3, the global stress constraint strategy is introduced. In Section 4, the sensitivity 
analysis is described. In Section 5, several numerical examples are presented to showcase the validity 
of the proposed method. Conclusions are stated in Section 6. 

2. Optimization formulation 

2.1. Material interpolation model 

For the structural topology optimization problem considering self-weight load, the parasitic effect 
occurs in the low-density region when the solid isotropic material with penalization (SIMP) model is 
adopted. The ratio of the element self-weight to the element stiffness in such a low-density region 
approaches infinity. The low-density configuration is not enough to bear its gravity, resulting in 
excessive displacement of the region. This may cause the optimization problem to not converge, and 
many unreasonable gray elements occur in the region. When the rational approximation of material 
properties (RAMP) model is applied, the ratio of the element self-weight to the element stiffness in the 
low-density area does not become unbounded. The parasitic effect for low densities can be avoided. 
Therefore, the RAMP model [40] is used to describe the material distribution. 
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where E  is the elastic modulus of element e , e  is the element density, that is, the design variable of 
element e , 0E  is the elastic modulus of the solid material, and k  is the penalization factor. 

2.2. Projection filtering 

The density filtering [41,42] method is adopted to avoid numerical instabilities such as 
checkerboard and mesh dependency. The filtered density e  can be obtained by the weighted average 
of the densities of the adjacent elements, 
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where e  is the neighboring set of elements within the minimum allowable radius minr . jw  is the 

weight function, which can be expressed as 

min

min

j
j

r r
w

r


                                                                         (2.3) 

where jr  is the distance between the centroids of element e  and element j . 
Assume that the weight factor jw  is defined as 0 for other elements beyond the filter radius. The 

filtered element density can be written as 
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where N  is the total number of finite elements, and ejW  is the modified weight factor and defined as 
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To reduce the intermediate densities in the topological configurations, the smoothed Heaviside 
projection [43] is used to modify the filtered density. The Heaviside function is formulated as 
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where e  is the physical density,   is the parameter that controls the steepness of the projection, 

and   represents the threshold value. 
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2.3. Topology optimization model 

Considering the combined action of mechanical loads and self-weight loads, minimization of the 
volume fraction of the structure is used as the objective function, and the maximum stress is developed 
as the constraint to meet the strength requirements. The model for stress-constrained topology 
optimization of continuum structures considering self-weight loads is established as 
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where fV  is the volume fraction of the structure, 0V  is the volume of the design domain, 0v  is the 
volume of elements filled with solid material, max  is the maximum von Mises stress, *  is the 
allowable stress value, K  is the global stiffness matrix of the structure, U  is the vector of the nodal 
displacement, mF  is the vector of the mechanical load, gF  is the vector of the self-weight load, and 
N  is the number of finite elements. min  is the minimum value of the element densities, which is set 
to be 10-3 to avoid the singularity of the global stiffness matrix. 

Square four-node elements are applied for structural finite element analysis, and the self-weight 
load vector of the element e  can be expressed as 

T
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4
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where m  is the material density, and g  represents the gravitational acceleration. 

3. Global stress constraint strategy 

For the plane stress problem, the element stress is expressed as 

0 11 22 12[ , , ]e e    σ D Bu T                                                             (3.1) 

where 0D   is the constitutive matrix, B   is the strain-displacement matrix, and eu   represents the 
vector of the element displacement. 11 , 22  and 12  are the stress components of the element e . 

The von Mises stress of the element e  can be calculated as 
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where V  is the auxiliary matrix and expressed as 
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To avoid the singularity phenomenon of the stress-constrained topology optimization problem, 
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the stress relaxation method [44] is applied to define the stress of intermediate density elements. The 
relaxation stress of the e th element can be represented as 

0.5
vm

e e
e                                                                         (3.4) 

If the local stress constraints are applied for every element, the total number of local constraints 
is too large, and the calculation efficiency is very low. To overcome this problem, the improved P-
norm method [34,45] is adopted to aggregate the local stress constraints for every element into a global 
stress constraint. In the improved P-norm method, the element density is employed as an elemental 
scale factor which has the positive effect on convergence of the stress constrained topology 
optimization problem. The maximum stress is calculated as 
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where   is constraint scaling coefficient, and p   represents the norm parameter. When the iteration 
step is n,   can be expressed as 
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where ( )n  is the parameter that can adaptively update the coefficient   during the optimization 
process. (1)  and (1)  are set to 0.5 and 1, respectively. 

4. Sensitivity analysis 

The sensitivity of the objective can be obtained by differentiating Eq (2.7) to a design variable 
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By taking the derivative of Eq (2.4), the term /e j    in Eq (4.1) can be obtained as 
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The term /e e     in Eq (4.1) is computed by differentiating Equation (2.6). 
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Substituting Eqs (4.2) and (4.3) into Eq (4.1) yields 
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The sensitivity of the maximum von Mises stress is expressed as 
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The term PN / e    in Eq (4.5) can be calculated as 
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The term /e
e    in Eq (4.5) is obtained by differentiating Eq (3.4). 
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The partial derivative of the element von Mises stress to the element stress can be expressed as 
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The partial derivative of element stress to physical density can be computed as 
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Taking the derivative of the finite element equilibrium equation yields 
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The term / e U  in Eq (4.10) can be calculated as 
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Substituting Eq (4.11) into Eq (4.9), the term /e e σ  is rewritten as 

T
1( )

g
e e

e e e  
          

σ u F K
DB K U

U
                                                    (4.12) 



4715 

Electronic Research Archive  Volume 31, Issue 8, 4708-4728. 

where /e u U  is a transformation of local element degrees of freedom into global degrees of freedom. 

Substituting Eqs (4.8) and (4.11) into Eq (4.7), the term /e
e    is rewritten as 
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where λ  is the adjoint vector and obtained as 
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The term /g
e e F  is obtained by differentiating Equation (2.8). 
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The method of moving asymptotes (MMA) [46] is suitable for solving complex topology 
optimization problems, and the method has good robustness. In this paper, the MMA method is 
employed to solve the optimization problem of stress-constrained topology optimization considering 
self-weight loads with high nonlinearity. 

5. Numerical examples 

In this section, the method for stress-based topology optimization considering self-weight load is 
demonstrated by two numerical examples. The material properties used are givens as follows: Young’s 
modulus 0E  is 68.9 GPa, Poisson’s ratio   is 0.33, and the material density m  is 2.7 × 103 kg/m3. 
The gravitational acceleration is 9.8 m/s2. The minimum allowable radius minr  is set to 3.5 times the 
element size, and the parameter p  of the P-norm is 8. The initial value of the parameter   is 1, 
which will double up to 16 every 10 every iterations. The initial value of the design variables is set 
to 0.85. 

5.1. L-shaped beam 

The design domain of the L-shaped beam is shown in Figure 1. The upper edge of the design 
domain is fixed, and the input load mF   = 7 kN is applied at the upper corner of the right edge. The 
load is evenly distributed on six nodes, as shown in Figure 1, to avoid stress concentration in the 
applied load region. The allowable stress constraint limit is set to 50 MPa. The design domain of the 
L-shaped beam has the dimensions of L = 1 m and H = 1 m, and it is discretized into 100 × 100 square 
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four-node elements. 

 

Figure 1. Design domain of the L-shaped beam. 

 

Figure 2. Topology optimization of the L-shaped beam without stress constraints 
considering self-weight loads: (a) optimal topology, (b) stress distribution, (c) 
convergence histories. 

First, topology optimization of the L-shaped beams without and with stress constraints 
considering the self-weight load are performed. In the optimization problem without stress constraints, 
minimization of the compliance is used as the objective subject to the volume constraint, and the 
volume allowable limit value is obtained by the results of stress-constrained topology optimization. 
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The results of topology optimization of the L-shaped beams without and with stress constraints 
considering the self-weight load are shown in Figures 2 and 3, respectively. The performances of the 
obtained L-shaped beams are listed in Table 1. 

 

Figure 3. Stress-constrained topology optimization of the L-shaped beam considering self-
weight loads: (a) optimal topology, (b) stress distribution, (c) convergence histories. 

Table 1. Results of L-shaped beams obtained by different optimization models. 

Optimization model 
Volume fraction 

(%) 

Maximum stress 

(MPa) 

Compliance 

(N∙m) 

Compliance minimization with volume 

constraint considering self-weight loads 
0.335 73.803 16.891 

Volume minimization with stress constraint 

considering self-weight loads 
0.335 50.033 20.316 

Volume minimization with stress constraint 

without considering self-weight loads 
0.301 49.998 23.570 

For the L-shaped beam in Figure 2, one can find that the reentrant corner occurs in the optimal 
layout, and the phenomenon of stress concentration at the corner is obvious, as shown in Figure 2(b). 
The maximum stress value of the L-shaped beam is 73.803 MPa, which exceeds the allowable stress 
limit value. Compared with the results obtained by topology optimization without stress constraints 
considering self-weight loads, the layout of the L-shaped beam obtained by topology optimization with 
stress constraints considering self-weight loads is different, and the reentrant corner is removed. The 
maximum stress value of the L-shaped beam obtained by the proposed method is 50.033 MPa, and the 
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maximum stress constraint is satisfied. The stress in the L-shaped beam obtained by the proposed 
method is more uniformly distributed. However, the compliance of the L-shaped beam obtained by the 
proposed method is larger than that of the L-shaped beam obtained by topology optimization without 
stress constraints considering self-weight loads, as shown in Table 1. This shows that the L-shaped 
beam obtained by the proposed method has higher strength but smaller stiffness. The same material 
volume is used in both cases. The compliance of the L-shaped beam obtained by compliance topology 
optimization is minimized to maximize structural stiffness. However, the stress levels of the L-shaped 
structure obtained by stress-constrained topology optimization considering the self-weight load can be 
controlled by eliminating the reentrant corner. 

 

Figure 4. Stress-constrained topology optimization of L-shaped beam without considering 
self-weight loads: (a) optimal topology, (b) stress distribution, (c) convergence histories. 

Second, to analyze the effect of the self-weight loads on the results of stress-constrained topology 
optimization, stress-constrained topology optimization of L-shaped beam without considering self-
weight loads is carried out. The topology optimization results are shown in Figure 4. The reentrant 
corner is also removed, and the maximum stress constraint can be satisfied. Compared with the results 
of stress-constrained topology optimization without considering self-weight loads, the layout of the L-
shaped beam obtained by the proposed method is different, and more materials are distributed in the 
region near the boundary constraint. More materials are used in the optimal configuration obtained by 
the proposed method, as shown in Table 1. Compared with that of the case without considering self-
weight loads, the total load applied on the structure in the case considering self-weight loads is greater. 
Therefore, more materials are applied in the structure to satisfy the same stress constraints. The 
maximum stresses of the two L-shaped beams obtained by stress-constrained topology optimization 
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without and with considering self-weight loads are 49.998 MPa and 50.033 MPa, respectively. The 
strengths of the of two L-shaped beams are nearly equal. The compliance of the L-shaped beam 
obtained by stress-constrained topology optimization considering self-weight loads is smaller than the 
other. This shows that the L-shaped beam obtained by the proposed method has better stiffness. 
Compared with the result obtained by topology optimization without considering self-weight loads, 
more materials are used in the L-shaped beam obtained by the proposed method to satisfy the same 
stress constraint limit subject to the mechanical load and self-weight loads. The L-shaped beam 
obtained by the proposed method has better stiffness because of more material usage. Moreover, the 
three iteration processes are stable, and the constraints can be satisfied, as shown in Figures 2(c), 3(c) 
and 4(c). 

 

Figure 5. Stress-constrained topology optimization of L-shaped beams considering self-
weight loads with different norm parameter p values: (a) p = 6; (b) p = 10. 

Table 2. Results of L-shaped beams with different norm parameter p. 

Norm parameter p value Volume fraction (%) Maximum stress (MPa) 
6 0.351 49.980 
8 0.335 49.999 
10 0.304 50.005 

In order to study the effects of different norm parameter p values on the obtained L-shaped beam, 
stress-constrained topology optimization of L-shaped beam considering self-weight loads wase carried 
out with different norm parameter p values. A comparison of optimal results obtained by the proposed 
method with different norm parameter p values is given in Figure 5 and Table 2. Optimal layouts of L-
shaped beams obtained by the proposed method with different norm parameter p are different, and the 
layout of L-shaped beam obtained by using a low p value is similar to that obtained by compliance 
topology optimization. As the norm parameter p is increased, the stress distribution of L-shaped beam 
is more uniform, and fewer materials are used to satisfy the stress constraint. 
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Finally, the effects of different mesh densities on the obtained L-shaped beam are investigated. 
Stress-based topology optimization of L-shaped beams considering self-weight loads are performed 
under different mesh densities. The optimal layout and stress distribution of L-shaped beams obtained 
by the proposed method under different mesh densities are given in Figure 6. One can find that the 
optimal layouts of L-shaped beams under different mesh densities are different, and the stress 
constraints can be satisfied in all the cases. As the mesh density is increased, more materials are also 
used in the obtained L-shaped beam, as shown in Table 3. As mentioned in [30], this is because the 
element stress is closer to point stress due to denser mesh. 

 

Figure 6. Stress-constrained topology optimization of L-shaped beams considering self-
weight loads with different mesh densities: (a) 150 × 150, (b) 200 × 200. 

Table 3. Results of L-shaped beams with different mesh densities. 

Mesh density Volume fraction (%) Maximum stress (MPa) 
100 × 100 0.335 49.999 
150 × 150 0.352 50.012 
200 × 200 0.408 50.075 

5.2. Cantilever beam 

The design domain of the cantilever beam is shown in Figure 7. The design domain has a size of 
L = 2 m and H = 1 m. The left edge of the design domain is fixed, and the input load mF   = 50 kN is 
applied at the middle of the right edge. To avoid stress concentration in the applied load region, the 
load is evenly distributed on five nodes. The allowable stress constraint limit is set to 50 MPa. The 
design domain is discretized into 100 × 50 square four-node elements. 
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Figure 7. Design domain of the cantilever beam. 

The optimal configurations, stress distribution and iteration histories for topology optimization 
of the cantilever beams with and without stress constraints considering self-weight loads are shown in 
Figures 8 and 9, respectively. The maximum stress of the cantilever beam obtained by topology 
optimization without stress constraints considering self-weight loads is 73.320 MPa, which exceeds 
the allowable stress limit value. The region with high stress is mainly concentrated in the left fixed 
boundary, and the stress distribution of the structure is extremely uneven, as shown in Figure 8. 

 

Figure 8. Topology optimization of the cantilever beam without stress constraints 
considering self-weight loads: (a) optimal topology, (b) stress distribution, (c) convergence 
histories. 

Compared with the results of topology optimization without stress constraint considering self-
weight loads, the optimal configuration of the cantilever beam obtained by the proposed method is 
different. The maximum stress of the cantilever beam obtained by the proposed method is 49.999 MPa, 
and stress constraints can be satisfied. The stress in the cantilever beam is more uniformly distributed. 
However, the compliance of the cantilever beam obtained by the proposed method is larger than the 
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other, as shown in Table 4. It shows that the cantilever beam obtained by the proposed method has 
higher strength but smaller stiffness. The same material volume is used in both cases. The compliance 
of the cantilever beam obtained by compliance topology optimization is minimized to maximize 
structural stiffness. The stress levels of the cantilever structure obtained by the proposed method can 
be controlled by changing the layout.  

 

Figure 9. Stress-constrained topology optimization of the cantilever beam considering 
self-weight loads: (a) optimal topology, (b) stress distribution, (c) convergence histories. 

Table 4. Results of cantilever beams obtained by different optimization models. 

Optimization model 
Volume fraction 

(%) 

Maximum stress 

(MPa) 

Compliance 

(N∙m) 

Compliance minimization with volume constraint 

considering self-weight loads 
0.426 73.320 134.536 

Volume minimization with stress constraint 

considering self-weight loads 
0.426 49.999 148.290 

Volume minimization with stress constraint 

without considering self-weight loads 
0.405 50.026 154.705 

Stress-constrained topology optimization of the cantilever beam without considering self-weight 
loads was performed. The results obtained by topology optimization without considering the self-
weight load are shown in Figure 10. Compared with the results of stress-constrained topology 
optimization without considering self-weight loads, the cantilever beam by the proposed method is 
different, and more materials are distributed in the region near the boundary constraint. More materials 
are used in the optimal configuration obtained by the proposed method, as shown in Table 3. Compared 
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to that of the case without considering self-weight loads, the total load applied on the structure 
considering the self-weight load is larger. Therefore, more materials are applied in the structure to 
satisfy the same stress constraints. The maximum stresses of the cantilever beams obtained by the 
proposed method and the other are 49.999 MPa and 50.026 MPa, respectively. This shows that the 
strength of the cantilever beam obtained by the proposed method is nearly equal to that obtained by 
the other method. However, the compliance of the cantilever beam obtained by the proposed method 
is smaller than that obtained by the other method. This shows that the cantilever beam obtained by the 
proposed method has better stiffness. Compared with the results obtained by topology optimization 
without considering self-weight loads, more materials are used in the cantilever beam obtained by the 
proposed method to satisfy the same stress constraint limit under the mechanical load and self-weight 
loads. The cantilever beam obtained by the proposed method has better stiffness because of more 
material usage. Moreover, the three iteration processes are stable, and the constraints can be satisfied, 
as shown in Figures 8(c), 9(c) and 10(c). 

 

Figure 10. Stress-constrained topology optimization of the cantilever beam without 
considering self-weight loads: (a) optimal topology, (b) stress distribution, (c) convergence 
histories. 

Table 5. Results of cantilever beams under different stress constraint limits. 

Stress constraint limit (MPa) Volume fraction (%) Maximum stress (MPa) 
45 0.506 44.998 
50 0.426 49.999 
55 0.378 54.999 

To investigate the effects of different stress constraints on the obtained cantilever beam, stress-
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constrained topology optimization of the cantilever beam considering self-weight loads was performed 
under different stress constraint limits.  Optimal results obtained by the proposed method under 
different constraint limits are given in Figure 11 and Table 5. One can find that the optimal layout of 
cantilever beams obtained by the proposed method under different constraint limits is similar, and the 
stress constraints can be satisfied in all the cases. As the stress limit value is decreased, more materials 
are used in the obtained cantilever beam to meet stress constraints.  

 

Figure 11. Topology optimization of the cantilever beam considering self-weight loads 
under different stress constraint limits: (a) 45 MPa, (b) 55 MPa. 

6. Conclusions 

A method for topology optimization of continuum structures with a global stress constraint 
considering self-weight loads was proposed. The rational approximation of material properties was 
applied to describe the material distribution. The minimization of the structure volume was used as the 
objective function. The improved P-norm method was applied to aggregate the local stress constraints 
for all elements into a global stress constraint. The projection filtering method was adopted to modify 
the sensitivities of the objective function and constraints. Stress-constrained topology optimization of 
continuum structure with mechanical and self-weight loads was performed. The topological structures 
obtained by the proposed method can meet the requirement of static strength. 

Compared with the results of compliance topology optimization considering self-weight loads, 
the optimal configurations of the structures obtained by the proposed method are quite different, and 
the stress constraints are satisfied. The structures obtained by the proposed method have better strength, 
and the stress is more uniformly distributed. Compared with the results of stress-constrained topology 
optimization without self-weight loads, the optimal configurations of the structures obtained by the 
proposed method are different, and more materials are used in the topological structures to satisfy 
stress constraints. The strengths of the two structures are nearly equal, but the structures obtained by 
the proposed method have better stiffness. This shows that the structures obtained by the proposed 
method have better comprehensive performance. As the norm parameter is increased, the stress 
distribution of the structures obtained by the proposed method is more uniform, and fewer materials 
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are used. As the stress limit value is decreased and the mesh density is increased, more materials are 
used in the obtained structures to meet stress constraints. The proposed method is performed based on 
linear elastic finite element theory. How to model stress-constrained topology optimization with 
geometrical nonlinearities considering self-weight loads will be investigated in the near future. 
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