Research article Special Issues

On constrained minimizers for Kirchhoff type equations with Berestycki-Lions type mass subcritical conditions

  • Received: 23 January 2023 Revised: 24 February 2023 Accepted: 27 February 2023 Published: 07 March 2023
  • In this paper, for given mass $ m > 0 $, we focus on the existence and nonexistence of constrained minimizers of the energy functional

    $ \begin{equation*} I(u): = \frac{a}{2}\int_{\mathbb{R}^3}\left|\nabla u\right|^2dx+\frac{b}{4}\left(\int_{\mathbb{R}^3}\left|\nabla u\right|^2dx\right)^2-\int_{\mathbb{R}^3}F(u)dx \end{equation*} $

    on $ S_m: = \left\{u\in H^1(\mathbb{R}^3):\, \|u\|^2_2 = m\right\}, $where $ a, b > 0 $ and $ F $ satisfies the almost optimal mass subcritical growth assumptions. We also establish the relationship between the normalized ground state solutions and the ground state to the action functional $ I(u)-\frac{\lambda}{2}\|u\|_2^2 $. Our results extend, nontrivially, the ones in Shibata (Manuscripta Math. 143 (2014) 221–237) and Jeanjean and Lu (Calc. Var. 61 (2022) 214) to the Kirchhoff type equations, and generalize and sharply improve the ones in Ye (Math. Methods. Appl. Sci. 38 (2015) 2603–2679) and Chen et al. (Appl. Math. Optim. 84 (2021) 773–806).

    Citation: Jing Hu, Jijiang Sun$ ^{} $. On constrained minimizers for Kirchhoff type equations with Berestycki-Lions type mass subcritical conditions[J]. Electronic Research Archive, 2023, 31(5): 2580-2594. doi: 10.3934/era.2023131

    Related Papers:

  • In this paper, for given mass $ m > 0 $, we focus on the existence and nonexistence of constrained minimizers of the energy functional

    $ \begin{equation*} I(u): = \frac{a}{2}\int_{\mathbb{R}^3}\left|\nabla u\right|^2dx+\frac{b}{4}\left(\int_{\mathbb{R}^3}\left|\nabla u\right|^2dx\right)^2-\int_{\mathbb{R}^3}F(u)dx \end{equation*} $

    on $ S_m: = \left\{u\in H^1(\mathbb{R}^3):\, \|u\|^2_2 = m\right\}, $where $ a, b > 0 $ and $ F $ satisfies the almost optimal mass subcritical growth assumptions. We also establish the relationship between the normalized ground state solutions and the ground state to the action functional $ I(u)-\frac{\lambda}{2}\|u\|_2^2 $. Our results extend, nontrivially, the ones in Shibata (Manuscripta Math. 143 (2014) 221–237) and Jeanjean and Lu (Calc. Var. 61 (2022) 214) to the Kirchhoff type equations, and generalize and sharply improve the ones in Ye (Math. Methods. Appl. Sci. 38 (2015) 2603–2679) and Chen et al. (Appl. Math. Optim. 84 (2021) 773–806).



    加载中


    [1] G. Kirchhoff, Mechanik, Teubner, Leipzig, (1883).
    [2] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3 doi: 10.1016/S0304-0208(08)70870-3
    [3] G. Li, H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$, J. Differ. Equations, 257 (2014), 566–600. https://doi.org/10.1016/j.jde.2014.04.011 doi: 10.1016/j.jde.2014.04.011
    [4] G. Li, P. Luo, S. Peng, C. Wang, C. Xiang, A singularly perturbed Kirchhoff problem revisited, J. Differ. Equations, 268 (2020), 541–589. https://doi.org/10.1016/j.jde.2019.08.016 doi: 10.1016/j.jde.2019.08.016
    [5] Y. Li, F. Li, J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equations, 253 (2012), 2285–2294. https://doi.org/10.1016/j.jde.2012.05.017 doi: 10.1016/j.jde.2012.05.017
    [6] Z. Liu, V. D. Radulescu, Z. Yuan, Concentration of solutions for fractional Kirchhoff equations with discontinuous reaction, Z. Angew. Math. Phys., 73 (2022), 211. https://doi.org/10.1007/s00033-022-01849-y doi: 10.1007/s00033-022-01849-y
    [7] Y. Su, H. Chen, Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent, Comput. Math. Appl., 78 (2019), 2063–2082. https://doi.org/10.1016/j.camwa.2019.03.052 doi: 10.1016/j.camwa.2019.03.052
    [8] X. Tang, S. T. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differ. Equations, 56 (2017), 110. https://doi.org/10.1007/s00526-017-1214-9 doi: 10.1007/s00526-017-1214-9
    [9] Q. He, Z. Lv, Y. Zhang, X. Zhong, Positive normalized solutions to the Kirchhoff equation with general nonlinearities of mass super-critical, arXiv preprint, 2021, arXiv: 2110.12921. https://doi.org/10.48550/arXiv.2110.12921
    [10] T. Hu, C. L. Tang, Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations, Calc. Var. Partial Differ. Equations, 60 (2021), 210. https://doi.org/10.1007/s00526-021-02018-1 doi: 10.1007/s00526-021-02018-1
    [11] G. Li, H. Ye, On the concentration phenomenon of $L^2$-subcritical constrained minimizers for a class of Kirchhoff equations with potentials, J. Differ. Equations, 266 (2019), 7101–7123. https://doi.org/10.1016/j.jde.2018.11.024 doi: 10.1016/j.jde.2018.11.024
    [12] S. Qi, W. Zou, Exact number of positive solutions for the Kirchhoff equation, SIAM J. Math. Anal., 54 (2022), 5424–5446. https://doi.org/10.1137/21M1445879 doi: 10.1137/21M1445879
    [13] W. Xie, H. Chen, Existence and multiplicity of normalized solutions for nonlinear Kirchhoff-type problems, Comput. Math. Appl., 76 (2018), 579–591. https://doi.org/10.1016/j.camwa.2018.04.038 doi: 10.1016/j.camwa.2018.04.038
    [14] H. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci., 38 (2015), 2663–2679. https://doi.org/10.1002/mma.3247 doi: 10.1002/mma.3247
    [15] H. Ye, The existence of normalized solutions for $L^2$-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys., 66 (2015), 1483–1497. https://doi.org/10.1007/s00033-014-0474-x doi: 10.1007/s00033-014-0474-x
    [16] H. Ye, The mass concentration phenomenon for $L^2$-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys., 67 (2016), 29. https://doi.org/10.1007/s00033-016-0624-4 doi: 10.1007/s00033-016-0624-4
    [17] X. Zeng, Y. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 74 (2017), 52–59. https://doi.org/10.1016/j.aml.2017.05.012 doi: 10.1016/j.aml.2017.05.012
    [18] X. Zeng, J. Zhang, Y. Zhang, X. Zhong, Positive normalized solution to the Kirchhoff equation with general nonlinearities, arXiv preprint, 2021, arXiv: 2112.10293. https://doi.org/10.48550/arXiv.2112.10293
    [19] P. Zhang, Z. Han. Normalized ground states for Kirchhoff equations in $\mathbb{R}^3$ with a critical nonlinearity, J. Math. Phys., 63 (2022), 021505. https://doi.org/10.1063/5.0067520 doi: 10.1063/5.0067520
    [20] S. Chen, V. Rădulescu, X. Tang, Normalized solutions of nonautonomous Kirchhoff equations: sub- and super-critical cases, Appl. Math. Optim., 84 (2021), 773–806. https://doi.org/10.1007/s00245-020-09661-8 doi: 10.1007/s00245-020-09661-8
    [21] L. Jeanjean, S. S. Lu, On global minimizers for a mass constrained problem, Calc. Var. Partial Differ. Equations, 61 (2022), 214. https://doi.org/10.1007/s00526-022-02320-6 doi: 10.1007/s00526-022-02320-6
    [22] L. Jeanjean, S. S. Lu, Normalized solutions with positive energies for a coercive problem and application to the cubic-quintic nonlinear Schrödinger equations, Math. Models Methods Appl. Sci., 32 (2022), 1557–1558. https://doi.org/10.1142/S0218202522500361 doi: 10.1142/S0218202522500361
    [23] M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscr. Math., 143 (2014), 221–237. https://doi.org/10.1007/s00229-013-0627-9 doi: 10.1007/s00229-013-0627-9
    [24] H. Berestycki, P. L. Lions, Nonlinear scalar field equations I: Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313–346. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555
    [25] L. Jeanjean, S. S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity, 32 (2019), 4942–4966. https://doi.org/10.1088/1361-6544/ab435e doi: 10.1088/1361-6544/ab435e
    [26] M. Willem, Minimax Theorems, Birkhäser, Boston, 1996.
    [27] M. Mariş, On the symmetry of minimizers, Arch. Ration. Mech. Anal., 192 (2009), 311–330. https://doi.org/10.1007/s00205-008-0136-2 doi: 10.1007/s00205-008-0136-2
    [28] J. E. Brothers, W. P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384 (1988), 153–179. https://doi.org/10.1515/crll.1988.384.153 doi: 10.1515/crll.1988.384.153
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1323) PDF downloads(120) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog