Research article Special Issues

Evaluation of nanostructured electrode materials for high-performance supercapacitors using multiple-criteria decision-making approach

  • Received: 18 December 2022 Revised: 04 February 2023 Accepted: 12 February 2023 Published: 24 February 2023
  • The enhancement of electrode materials' properties for improving mercantile supercapacitors' performances is a remarkable research area. Throughout recent years, a significant amount of research has been devoted to improving the electrochemical performance of supercapacitors via the improvement of novel electrode materials. The nanocomposite structure provides a greater specific surface area (SSA) and lower ion/electron diffusion tracks, consequently enhancing supercapacitors' energy density and specific capacitance. These significant properties offer a wide range of potential for the electrode materials to be applied in diverse applications. For instance, their applications are in portable electronic systems such as all-solid-state supercapacitors, flexible/transparent supercapacitors and hybrid supercapacitors. The authors of this paper introduced a multi-criteria model to assess the priority of nanostructured electrode materials (NEMs) for high-performance supercapacitors (HPSCs). This work combines Analytic Hierarchy Process (AHP) with the Evaluation Based on Distance from Average Solution (EDAS) and Grey Relational Analysis (GRA) methods. Herein, the rough concept addresses the uncertainties resulting from the group decision-making process and the vague values of the properties of the NEMs. The modified R-AHP method was employed to find the criteria weights based on the multi-experts' opinions. The results reveal that specific capacitance (SC) and energy density (ED) are the most important criteria. R-AHP was integrated with R-EDAS and R-GRA models to evaluate the fourteen NEMs. The results of the R-EDAS method were compared with those provided by the R-GRA method. The results of the proposed integrated approach confirmed that it results in reliable and reputable ranks that will provide a framework for further applications and help physicists find optimal materials by evaluating various alternatives.

    Citation: Ibrahim M. Hezam, Aref M. Al-Syadi, Abdelaziz Foul, Ahmad Alshamrani, Jeonghwan Gwak. Evaluation of nanostructured electrode materials for high-performance supercapacitors using multiple-criteria decision-making approach[J]. Electronic Research Archive, 2023, 31(4): 2286-2314. doi: 10.3934/era.2023117

    Related Papers:

  • The enhancement of electrode materials' properties for improving mercantile supercapacitors' performances is a remarkable research area. Throughout recent years, a significant amount of research has been devoted to improving the electrochemical performance of supercapacitors via the improvement of novel electrode materials. The nanocomposite structure provides a greater specific surface area (SSA) and lower ion/electron diffusion tracks, consequently enhancing supercapacitors' energy density and specific capacitance. These significant properties offer a wide range of potential for the electrode materials to be applied in diverse applications. For instance, their applications are in portable electronic systems such as all-solid-state supercapacitors, flexible/transparent supercapacitors and hybrid supercapacitors. The authors of this paper introduced a multi-criteria model to assess the priority of nanostructured electrode materials (NEMs) for high-performance supercapacitors (HPSCs). This work combines Analytic Hierarchy Process (AHP) with the Evaluation Based on Distance from Average Solution (EDAS) and Grey Relational Analysis (GRA) methods. Herein, the rough concept addresses the uncertainties resulting from the group decision-making process and the vague values of the properties of the NEMs. The modified R-AHP method was employed to find the criteria weights based on the multi-experts' opinions. The results reveal that specific capacitance (SC) and energy density (ED) are the most important criteria. R-AHP was integrated with R-EDAS and R-GRA models to evaluate the fourteen NEMs. The results of the R-EDAS method were compared with those provided by the R-GRA method. The results of the proposed integrated approach confirmed that it results in reliable and reputable ranks that will provide a framework for further applications and help physicists find optimal materials by evaluating various alternatives.



    加载中


    [1] C. Zhao, W. Zheng, A review for aqueous electrochemical supercapacitors, Front. Energy Res., 3 (2015). https://doi.org/10.3389/fenrg.2015.00023 doi: 10.3389/fenrg.2015.00023
    [2] L. Lai, H. Yang, L. Wang, B. K. Teh, J. Zhong, H. Chou, et al., Preparation of supercapacitor electrodes through selection of graphene surface functionalities, ACS Nano, 6 (2012), 5941–5951. https://doi.org/10.1021/nn3008096 doi: 10.1021/nn3008096
    [3] E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys., 9 (2007), 1774. https://doi.org/10.1039/b618139m doi: 10.1039/b618139m
    [4] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J. Power Sources, 195 (2010), 7880–7903. https://doi.org/10.1016/j.jpowsour.2010.06.036 doi: 10.1016/j.jpowsour.2010.06.036
    [5] Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu, H. M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors, ACS Nano, 4 (2010), 5835–5842. https://doi.org/10.1021/nn101754k doi: 10.1021/nn101754k
    [6] P. Forouzandeh, V. Kumaravel, S. C. Pillai, Electrode materials for supercapacitors: a review of recent advances, Catalysts, 10 (2020), 969. https://doi.org/10.3390/catal10090969 doi: 10.3390/catal10090969
    [7] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C, 113 (2009), 13103–13107. https://doi.org/10.1021/jp902214f doi: 10.1021/jp902214f
    [8] Y. Shabangoli, M. S. Rahmanifar, A. Noori, M. F. El-Kady, R. B. Kaner, M. F. Mousavi, Nile blue functionalized graphene aerogel as a pseudocapacitive negative electrode material across the full pH range, ACS Nano, 13 (2019), 12567–12576. https://doi.org/10.1021/acsnano.9b03351 doi: 10.1021/acsnano.9b03351
    [9] H. Ma, D. Kong, Y. Xu, X. Xie, Y. Tao, Z. Xiao, et al., Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor, Small, 13 (2017), 1701026. https://doi.org/10.1002/smll.201701026 doi: 10.1002/smll.201701026
    [10] N. Syarif, T. A. Ivandini, W. Wibowo, Direct synthesis carbon/metal oxide composites for electrochemical capacitors electrode, Int. Trans. J. Eng. Manage. Appl. Sci. Technol., 3 (2012), 21–34. Available from: https://tuengr.com/V03/21-34.pdf.
    [11] L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 38 (2009), 2520–2531. https://doi.org/10.1039/b813846j doi: 10.1039/b813846j
    [12] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001), 937–950. https://doi.org/10.1016/S0008-6223(00)00183-4 doi: 10.1016/S0008-6223(00)00183-4
    [13] P. Simon, A. Burke, Nanostructured carbons: double-layer capacitance and more, Electrochem. Soc. Interface, 17 (2008), 38–43. https://doi.org/10.1149/2.F05081IF doi: 10.1149/2.F05081IF
    [14] E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 77 (2000), 2421–2423. https://doi.org/10.1063/1.1290146 doi: 10.1063/1.1290146
    [15] M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev., 39 (2010), 4146–4157. https://doi.org/10.1039/c002690p doi: 10.1039/c002690p
    [16] Y. B. Tan, J. M. Lee, Graphene for supercapacitor applications, J. Mater. Chem. A, 1 (2013), 14814–14843. https://doi.org/10.1039/c3ta12193c doi: 10.1039/c3ta12193c
    [17] T. Y. Kim, G. Jung, S. Yoo, K. S. Suh, R. S. Ruoff, Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores, ACS Nano, 7 (2013), 6899–6905. https://doi.org/10.1021/nn402077v doi: 10.1021/nn402077v
    [18] V. C. Lokhande, A. C. Lokhande, C. D. Lokhande, J. H. Kim, T. Ji, Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers, J Alloys Compd., 682 (2016), 381–403. https://doi.org/10.1016/j.jallcom.2016.04.242 doi: 10.1016/j.jallcom.2016.04.242
    [19] J. Y. Hwang, M. F. El-Kady, Y. Wang, L. Wang, Y. Shao, K. Marsh, et al., Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage, Nano Energy, 18 (2015), 57–70. https://doi.org/10.1016/j.nanoen.2015.09.009 doi: 10.1016/j.nanoen.2015.09.009
    [20] D. Zhao, X. Guo, Y. Gao, F. Gao, An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide, ACS Appl. Mater. Interfaces, 4 (2012), 5583–5589. https://doi.org/10.1021/am301484s doi: 10.1021/am301484s
    [21] I. Acznik, K. Lota, A. Sierczynska, G. Lota, Carbon-supported manganese dioxide as electrode material for asymmetric electrochemical capacitors, Int. J. Electrochem. Sci., 9 (2014), 2518–2534. Available from: http://www.electrochemsci.org/papers/vol9/90502518.pdf.
    [22] S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano, 4 (2010), 2822–2830. https://doi.org/10.1021/nn901311t doi: 10.1021/nn901311t
    [23] J. G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors, Prog. Mater. Sci., 74 (2015), 51–124. https://doi.org/10.1016/j.pmatsci.2015.04.003 doi: 10.1016/j.pmatsci.2015.04.003
    [24] D. D. Zhao, M. W. Xu, W. J. Zhou, J. Zhang, H. L. Li, Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route, Electrochim. Acta, 53 (2008), 2699–2705. https://doi.org/10.1016/j.electacta.2007.07.053 doi: 10.1016/j.electacta.2007.07.053
    [25] Y. Wang, Y. Xia, Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15, Electrochim. Acta, 51 (2006), 3223–3227. https://doi.org/10.1016/j.electacta.2005.09.013 doi: 10.1016/j.electacta.2005.09.013
    [26] B. Li, M. Zheng, H. Xue, H. Pang, High performance electrochemical capacitor materials focusing on nickel based materials, Inorg. Chem. Front., 3 (2016), 175–202. https://doi.org/10.1039/C5QI00187K doi: 10.1039/C5QI00187K
    [27] S. R. Ede, S. Anantharaj, K. T. Kumaran, S. Mishrab, S. Kundu, One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors, RSC Adv., 7 (2017), 5898–5911. https://doi.org/10.1039/C6RA26584G doi: 10.1039/C6RA26584G
    [28] H. Wang, H. S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc., 132 (2010), 7472–7477. https://doi.org/10.1021/ja102267j doi: 10.1021/ja102267j
    [29] Q. T. Qu, L. L. Liu, Y. P. Wu, R. Holze, Electrochemical behavior of V2O5·0.6H2O nanoribbons in neutral aqueous electrolyte solution, Electrochim. Acta, 96 (2013), 8–12. https://doi.org/10.1016/j.electacta.2013.02.078 doi: 10.1016/j.electacta.2013.02.078
    [30] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7 (2014), 1597. https://doi.org/10.1039/c3ee44164d doi: 10.1039/c3ee44164d
    [31] Y. Liu, J. Zhou, J. Tang, W. Tang, Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors, Chem. Mater., 27 (2015), 7034–7041. https://doi.org/10.1021/acs.chemmater.5b03060 doi: 10.1021/acs.chemmater.5b03060
    [32] G. A. Snook, P. Kao, A. S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources, 196 (2011), 1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084 doi: 10.1016/j.jpowsour.2010.06.084
    [33] C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Lett., 13 (2013), 2078–2085. https://doi.org/10.1021/nl400378j doi: 10.1021/nl400378j
    [34] Poonam, K. Sharma, A. Arora, S. K. Tripathi, Review of supercapacitors: materials and devices, J. Energy Storage, 21 (2019), 801–825. https://doi.org/10.1016/j.est.2019.01.010 doi: 10.1016/j.est.2019.01.010
    [35] M. Mastragostino, Conducting polymers as electrode materials in supercapacitors, Solid State Ionics, 148 (2002), 493–498. https://doi.org/10.1016/S0167-2738(02)00093-0 doi: 10.1016/S0167-2738(02)00093-0
    [36] K. Xie, B. Wei, Materials and structures for stretchable energy storage and conversion devices, Adv. Mater., 26 (2014), 3592–3617. https://doi.org/10.1002/adma.201305919 doi: 10.1002/adma.201305919
    [37] I. I. Karayalcin, The analytic hierarchy process: planning, priority setting, resource allocation, Eur. J. Oper. Res., 9 (1982), 97–98. https://doi.org/10.1016/0377-2217(82)90022-4 doi: 10.1016/0377-2217(82)90022-4
    [38] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [39] T. L. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (Decision Making Series), McGraw-Hill, (1980), 1–287.
    [40] M. K. Ghorabaee, E. K. Zavadskas, L. Olfat, Z. Turskis, Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS), Informatica, 26 (2015), 435–451. https://doi.org/10.15388/Informatica.2015.57 doi: 10.15388/Informatica.2015.57
    [41] J. L. Deng, Introduction to Grey system theory, J. Grey Syst., 1 (1989), 1–24.
    [42] T. C. Chang, S. J. Lin, Grey relation analysis of carbon dioxide emissions from industrial production and energy uses in Taiwan, J. Environ. Manage., 56 (1999), 247–257. https://doi.org/10.1006/jema.1999.0288 doi: 10.1006/jema.1999.0288
    [43] L. Li, X. Wang, S. Wang, Z. Cao, Z. Wu, H. Wang, et al., Activated carbon prepared from lignite as supercapacitor electrode materials, Electroanalysis, 28 (2016), 243–248. https://doi.org/10.1002/elan.201500532 doi: 10.1002/elan.201500532
    [44] M. Zhang, J. Cheng, L. Zhang, Y. Li, M. S. Chen, Y. Chen, et al., Activated carbon by one-step calcination of deoxygenated agar for high voltage lithium ion supercapacitor, ACS Sustain. Chem. Eng., 8 (2020), 3637–3643. https://doi.org/10.1021/acssuschemeng.9b06347 doi: 10.1021/acssuschemeng.9b06347
    [45] F. Cheng, X. Yang, S. Zhang, W. Lu, Boosting the supercapacitor performances of activated carbon with carbon nanomaterials, J. Power Sources, 450 (2020), 227678. https://doi.org/10.1016/j.jpowsour.2019.227678 doi: 10.1016/j.jpowsour.2019.227678
    [46] Y. J. Hsiao, L. Y. Lin, Efficient pore engineering in carbonized zeolitic imidazolate Framework-8 via chemical and physical methods as active materials for supercapacitors, J. Power Sources, 486 (2021), 229370. https://doi.org/10.1016/j.jpowsour.2020.229370 doi: 10.1016/j.jpowsour.2020.229370
    [47] Y. H. Chiu, L. Y. Lin, Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors, J. Taiwan Inst. Chem. Eng., 101 (2019), 177–185. https://doi.org/10.1016/j.jtice.2019.04.050 doi: 10.1016/j.jtice.2019.04.050
    [48] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinyaa, L. C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, Phys. Chem. Chem. Phys., 13 (2011), 17615. https://doi.org/10.1039/c1cp21910c doi: 10.1039/c1cp21910c
    [49] Q. Liu, J. Yang, X. Luo, Y. Miao, Y. Zhang, W. Xu, et al., Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor, Ceram. Int., 46 (2020), 11874–11881. https://doi.org/10.1016/j.ceramint.2020.01.222 doi: 10.1016/j.ceramint.2020.01.222
    [50] H. Kim, B. N. Popov, Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method, J. Power Sources, 104 (2002), 52–61. https://doi.org/10.1016/S0378-7753(01)00903-X doi: 10.1016/S0378-7753(01)00903-X
    [51] S. Kong, K. Cheng, T. Ouyang, Y. Gao, K. Ye, G. Wang, et al., Facile electrodepositing processed of RuO2-graphene nanosheets-CNT composites as a binder-free electrode for electrochemical supercapacitors, Electrochim. Acta, 246 (2017), 433–442. https://doi.org/10.1016/j.electacta.2017.06.019 doi: 10.1016/j.electacta.2017.06.019
    [52] O. Ghodbane, J. L. Pascal, F. Favier, Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors, ACS Appl. Mater. Interfaces, 1 (2009), 1130–1139. https://doi.org/10.1021/am900094e doi: 10.1021/am900094e
    [53] J. Dong, G. Lu, F. Wu, C. Xu, X. Kang, Z. Cheng, Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors, Appl. Surf. Sci., 427 (2018), 986–993. https://doi.org/10.1016/j.apsusc.2017.07.291 doi: 10.1016/j.apsusc.2017.07.291
    [54] Z. Lu, Z. Chang, J. Liu, X. Sun, Stable ultrahigh specific capacitance of NiO nanorod arrays, Nano Res., 4 (2011), 658–665. https://doi.org/10.1007/s12274-011-0121-1 doi: 10.1007/s12274-011-0121-1
    [55] P. Liu, M. Yang, S. Zhou, Y. Huang, Y. Zhu, Hierarchical shell-core structures of concave spherical NiO nanospines@carbon for high performance supercapacitor electrodes, Electrochim. Acta, 294 (2019), 383–390. https://doi.org/10.1016/j.electacta.2018.10.112 doi: 10.1016/j.electacta.2018.10.112
    [56] C. S. Kwak, T. H. Ko, J. H. Lee, H. Y. Kim, B. S. Kim, Flexible transparent symmetric solid-state supercapacitors based on NiO-decorated nanofiber-based composite electrodes with excellent mechanical flexibility and cyclability, ACS Appl. Energy Mater., 3 (2020), 2394–2403. https://doi.org/10.1021/acsaem.9b02073 doi: 10.1021/acsaem.9b02073
    [57] A. Ray, A. Roy, S. Saha, M. Ghosh, S. R. Chowdhury, T. Maiyalagan, et al., Electrochemical energy storage properties of Ni-Mn-Oxide electrodes for advance asymmetric supercapacitor application, Langmuir, 35 (2019), 8257–8267. https://doi.org/10.1021/acs.langmuir.9b00955 doi: 10.1021/acs.langmuir.9b00955
    [58] P. Y. Lee, L. Y. Lin, Developing zeolitic imidazolate frameworks 67-derived fluorides using 2-methylimidazole and ammonia fluoride for energy storage and electrocatalysis, Energy, 239 (2022), 122129. https://doi.org/10.1016/j.energy.2021.122129 doi: 10.1016/j.energy.2021.122129
    [59] K. L. Chiu, L. Y. Lin, Applied potential-dependent performance of the nickel cobalt oxysulfide nanotube/nickel molybdenum oxide nanosheet core–shell structure in energy storage and oxygen evolution, J. Mater. Chem. A, 7 (2019), 4626–4639. https://doi.org/10.1039/C8TA11471D doi: 10.1039/C8TA11471D
    [60] H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, et al., Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials, Nat. Commun., 4 (2013), 1894. https://doi.org/10.1038/ncomms2932 doi: 10.1038/ncomms2932
    [61] Z. Xiao, P. Liu, J. Zhang, H. Qi, J. Liu, B. Li, et al., Pillar-coordinated strategy to modulate phase transfer of α-Ni(OH)2 for enhanced supercapacitor application, ACS Appl. Energy Mater., 3 (2020), 5628–5636. https://doi.org/10.1021/acsaem.0c00596 doi: 10.1021/acsaem.0c00596
    [62] T. Xia, X. Zhang, J. Zhao, Q. Li, C. Ao, R. Hu, et al., Flexible and conductive carbonized cotton fabrics coupled with a nanostructured Ni(OH)2 coating for high performance aqueous symmetric supercapacitors, ACS Sustainable Chem. Eng., 7 (2019), 5231–5239. https://doi.org/10.1021/acssuschemeng.8b06150 doi: 10.1021/acssuschemeng.8b06150
    [63] M. J. Deng, L. H. Yeh, Y. H. Lin, J. M. Chen, T. H. Chou, 3D network V2O5 electrodes in a gel electrolyte for high-voltage wearable symmetric pseudocapacitors, ACS Appl. Mater. Interfaces, 11 (2019), 29838–29848. https://doi.org/10.1021/acsami.9b07845 doi: 10.1021/acsami.9b07845
    [64] H. C. Chen, Y. C. Lin, Y. L. Chen, C. J. Chen, Facile fabrication of three-dimensional hierarchical nanoarchitectures of VO2/Graphene@NiS2 hybrid aerogel for high-performance all-solid-state asymmetric supercapacitors with ultrahigh energy density, ACS Appl. Energy Mater., 2 (2019), 459–467. https://doi.org/10.1021/acsaem.8b01486 doi: 10.1021/acsaem.8b01486
    [65] W. Bi, Y. Wu, C. Liu, J. Wang, Y. Du, G. Gao, et al., Gradient oxygen vacancies in V2O5/PEDOT nanocables for high-performance supercapacitors, ACS Appl. Energy Mater., 2 (2019), 668–677. https://doi.org/10.1021/acsaem.8b01676 doi: 10.1021/acsaem.8b01676
    [66] K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors, J. Phys. Chem. C, 114 (2010), 8062–8067. https://doi.org/10.1021/jp9113255 doi: 10.1021/jp9113255
    [67] C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett., 6 (2006), 2690–2695. https://doi.org/10.1021/nl061576a doi: 10.1021/nl061576a
    [68] Y. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, et al., Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes, J. Mater. Chem. A, 2 (2014), 6086–6091. https://doi.org/10.1039/C4TA00484A doi: 10.1039/C4TA00484A
    [69] P. Bober, N. Gavrilov, A. Kovalcik, M. Mičušík, C. Unterweger, I. A. Pašti, et al., Electrochemical properties of lignin/polypyrrole composites and their carbonized analogues, Mater. Chem. Phys., 213 (2018), 352–361. https://doi.org/10.1016/j.matchemphys.2018.04.043 doi: 10.1016/j.matchemphys.2018.04.043
    [70] F. Zhang, J. Tang, N. Shinya, L. C. Qin, Hybrid graphene electrodes for supercapacitors of high energy density, Chem. Phys. Lett., 584 (2013), 124–129. https://doi.org/10.1016/j.cplett.2013.08.021 doi: 10.1016/j.cplett.2013.08.021
    [71] H. Wang, H. Yi, X. Chen, X. Wang, Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance, J. Mater. Chem. A, 2 (2014), 3223–3230. https://doi.org/10.1039/C3TA15046A doi: 10.1039/C3TA15046A
    [72] S. D. Perera, B. Patel, N. Nijem, K. Roodenko, O. Seitz, J. P. Ferraris, et al., Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors, Adv. Energy Mater., 1 (2011), 936–945. https://doi.org/10.1002/aenm.201100221 doi: 10.1002/aenm.201100221
    [73] L. Hu, N. Yan, Q. Chen, P. Zhang, H. Zhong, X. Zheng, et al., Fabrication based on the kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage, Chem. - A Eur. J., 18 (2012), 8971–8977. https://doi.org/10.1002/chem.201200770 doi: 10.1002/chem.201200770
    [74] Y. Yang, Y. Xi, J. Li, G. Wei, N. I. Klyui, W. Han, Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes, Nanoscale Res. Lett., 12 (2017), 394. https://doi.org/10.1186/s11671-017-2159-9 doi: 10.1186/s11671-017-2159-9
    [75] J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, et al., Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors, J. Power Sources, 195 (2010), 3041–3045. https://doi.org/10.1016/j.jpowsour.2009.11.028 doi: 10.1016/j.jpowsour.2009.11.028
    [76] J. Jaidev, S. Ramaprabhu, Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications, J. Mater. Chem., 22 (2012), 18775–18783. https://doi.org/10.1039/C2JM33627H doi: 10.1039/C2JM33627H
    [77] M. S. Nam, U. Patil, B. Park, H. B. Sim, S. C. Jun, A binder free synthesis of 1D PANI and 2D MoS2 nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application, RSC Adv., 6 (2016), 101592–101601. https://doi.org/10.1039/C6RA16078F doi: 10.1039/C6RA16078F
    [78] Y. Liu, B. Zhang, Y. Yang, Z. Chang, Z. Wen, Y. Wu, Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors, J. Mater. Chem. A, 1 (2013), 13582. https://doi.org/10.1039/c3ta12902k doi: 10.1039/c3ta12902k
    [79] R. P. Raj, P. Ragupathy, S. Mohan, Remarkable capacitive behavior of a Co3O4–polyindole composite as electrode material for supercapacitor applications, J. Mater. Chem. A, 3 (2015), 24338–24348. https://doi.org/10.1039/C5TA07046E doi: 10.1039/C5TA07046E
    [80] Z. S. Iro, C. Subramani, S. S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci., 11 (2016), 10628–10643. https://doi.org/10.20964/2016.12.50 doi: 10.20964/2016.12.50
    [81] A. M. Al-Syadi, Electrochemical performance of Na2O–Li2O–P2S5–V2S5 glass–ceramic nanocomposites as electrodes for supercapacitors, Appl. Phys. A, 127 (2021), 755. https://doi.org/10.1007/s00339-021-04899-7 doi: 10.1007/s00339-021-04899-7
    [82] A. M. Al-Syadi, M. S. Al-Assiri, H. M. A. Hassan, G. E. Enany, M. M. El-Desoky, Effect of sulfur addition on the electrochemical performance of lithium‑vanadium-phosphate glasses as electrodes for energy storage devices, J. Electroanal. Chem., 804 (2017), 36–41. https://doi.org/10.1016/j.jelechem.2017.09.041 doi: 10.1016/j.jelechem.2017.09.041
    [83] M. M. El-Desoky, A. M. Al-Syadi, M. S. Al-Assiri, H. M. A. Hassan, G. E. Enany, Electrochemical performance of novel Li3V2(PO4)3 glass-ceramic nanocomposites as electrodes for energy storage devices, J. Solid State Electrochem., 20 (2016), 2663–2671. https://doi.org/10.1007/s10008-016-3267-7 doi: 10.1007/s10008-016-3267-7
    [84] M. M. El-Desoky, A. M. Al-Syadi, M. S. Al-Assiri, H. M. A. Hassan, Effect of sulfur addition and nanocrystallization on the transport properties of lithium–vanadium–phosphate glasses, J. Mater. Sci. Mater. Electron., 29 (2018), 968–977. https://doi.org/10.1007/s10854-017-7994-z doi: 10.1007/s10854-017-7994-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(11630) PDF downloads(56) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog