Research article

Optimal control problems with time inconsistency

  • Received: 15 September 2022 Revised: 04 November 2022 Accepted: 10 November 2022 Published: 11 November 2022
  • In the present study, the necessary and sufficient conditions of equilibrium control for general optimal control problems with time inconsistency are established in sense of open-loop. As an application, the linear quadratic optimal control problems with time inconsistency were also explored and an explicit equilibrium control is constructed.

    Citation: Wei Ji. Optimal control problems with time inconsistency[J]. Electronic Research Archive, 2023, 31(1): 492-508. doi: 10.3934/era.2023024

    Related Papers:

  • In the present study, the necessary and sufficient conditions of equilibrium control for general optimal control problems with time inconsistency are established in sense of open-loop. As an application, the linear quadratic optimal control problems with time inconsistency were also explored and an explicit equilibrium control is constructed.



    加载中


    [1] R. Bellman, Dynamic Programming, Princeton University Press, New Jersey, 1957.
    [2] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, The Mathematical Theory of Optimal Processes, Wiley-Interscience, New York, 1962.
    [3] D. Hume, A Treatise of Human Nature, Oxford University Press, New York, 1978.
    [4] A. Smith, The Theory of Moral Sentiments, Oxford University Press, New York, 1976.
    [5] V. Pareto, Manuel D$\acute{e}$conomie Politique, Girard and Brieve, Paris, 1909.
    [6] P. Samuelson, A note on measurement of utility, Rev. Econ. Stud., 4 (1937), 155–161. https://doi.org/10.2307/2967612 doi: 10.2307/2967612
    [7] R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Rev. Econ. Stud., 23 (1955), 165–180. https://doi.org/10.2307/2295722 doi: 10.2307/2295722
    [8] H. Thaler, Asymmetric games and the endowment effect, Behav. Brain Sci., 7 (1984), 117. https://doi.org/10.1017/S0140525X00026492 doi: 10.1017/S0140525X00026492
    [9] F. Kydland, E. Prescott, Rules rather than discretion: The inconsistency of optimal plans, J. Polit. Econ., 85 (1977), 473–491. https://doi.org/10.1086/260580 doi: 10.1086/260580
    [10] D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263–291. https://doi.org/10.2307/1914185 doi: 10.2307/1914185
    [11] I. Ekeland, A. Lazrak, Being serious about non-commitment: Subgame perfect equilibrium in continuous time, preprint, arXiv: math/0604264.
    [12] T. Bj$\ddot{o}$rk, A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, 2010. Available from: https://ssrn.com/abstract=1694759.
    [13] T. Bj$\ddot o$rk, M. Khapko, A. Murgoci, On time inconsistent stochastic control in continuous time, Financ. Stoch., 21 (2017), 331–360. https://doi.org/10.1007/s00780-017-0327-5 doi: 10.1007/s00780-017-0327-5
    [14] T. Bj$\ddot o$rk, A. Murgoci, A general theory of Markovian time inconsistent stochastic control in discrete time, Financ. Stoch., 18 (2014), 545–592. https://doi.org/10.1007/s00780-014-0234-y doi: 10.1007/s00780-014-0234-y
    [15] T. Bj$\ddot{o}$rk, M. Khapko, A. Murgoci, Time inconsistent stochastic control in continuous time: Theory and examples, preprint, arXiv: 1612.03650.
    [16] J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations-time consistent solutions, Trans. Am. Math. Soc., 369 (2017), 5467–5523. https://doi.org/10.1090/tran/6502 doi: 10.1090/tran/6502
    [17] J. Yong, Time-inconsistent optimal control problem and the equilibrium HJB equation, Math. Control Relat. Fields, 2 (2012), 271–329. https://doi.org/10.3934/mcrf.2012.2.271 doi: 10.3934/mcrf.2012.2.271
    [18] J. Yong, A deterministic linear quadratic time-inconsistent optimal control problem, Math. Control Relat. Fields, 1 (2011), 83–118. https://doi.org/10.3934/mcrf.2011.1.83 doi: 10.3934/mcrf.2011.1.83
    [19] J. Yong, Deterministic time-inconsistent optimal control problem-an essentially cooperative approach, Acta Math. Appl. Sin. Engl. Ser., 28 (2012), 1–30. https://doi.org/10.1007/s10255-012-0120-3 doi: 10.1007/s10255-012-0120-3
    [20] Y. Hamaguchi, Small-time solvability of a flow of forward-backward stochastic differential equations, Appl. Math. Optim., 84 (2021), 567–588. https://doi.org/10.1007/s00245-020-09654-7 doi: 10.1007/s00245-020-09654-7
    [21] G. Zhang, Q. Zhu, Event-triggered optimized control for nonlinear delayed stochastic systems, IEEE Trans. Circuits Syst. I Regul. Pap., 68 (2021), 3808–3821. https://doi.org/10.1007/s00245-020-09654-7 doi: 10.1007/s00245-020-09654-7
    [22] Q. Wei, J. Yong, Z. Yu, Time-inconsistent recursive stochastic optimal control problems, SIAM J. Control Optim., 55 (2019), 4156–4201. https://doi.org/10.1137/16M1079415 doi: 10.1137/16M1079415
    [23] T. Wang, Z. Jin, J. Wei, Mean-variance portfolio selection under a non-Markovian regime-switching model: Time-consistent solutions, SIAM J. Control Optim., 57 (2019), 3240–3271. https://doi.org/10.1137/18M1186423 doi: 10.1137/18M1186423
    [24] F. Dou, Q. Lv, Time-inconsistent linear quadratic optimal control problems for stochastic evolution equations, SIAM J. Control Optim., 58 (2020), 485–509. https://doi.org/10.1137/19M1250339 doi: 10.1137/19M1250339
    [25] Y. Hu, H. Jin, X. Y. Zhou, Time inconsistent stochastic linear quadratic control, SIAM J. Control Optim., 50 (2012), 1548–1572. https://doi.org/10.1137/110853960 doi: 10.1137/110853960
    [26] Y. Hu, H. Jin, X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium, SIAM J. Control Optim., 55 (2017), 1261–1279. https://doi.org/10.1137/15M1019040 doi: 10.1137/15M1019040
    [27] I. Alia, Open-loop equilibriums for a general class of time-inconsistent stochastic optimal control problems, Math. Control Relat. Fields, 11 (2021), 1–44. https://doi.org/10.3934/mcrf.2021053 doi: 10.3934/mcrf.2021053
    [28] I. Alia, Time-inconsistent stochastic optimal control problems: A backward stochastic partial differential equations approach, Math. Control Relat. Fields, 10 (2020), 785–826. https://doi.org/10.3934/mcrf.2020020 doi: 10.3934/mcrf.2020020
    [29] I. Alia, A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion, Math. Control Relat. Fields, 9 (2019), 541–570. https://doi.org/10.3934/mcrf.2019025 doi: 10.3934/mcrf.2019025
    [30] H. Cai, D. Chen, Y. Peng, W. Wei, On the time-inconsistent deterministic linear-quadratic control, SIAM J. Control Optim., 60 (2022), 968–991. https://doi.org/10.1137/21M1419611 doi: 10.1137/21M1419611
    [31] X. He, L. Jiang, On the equilibrium strategies for time-inconsistent problem in continuous time, SIAM J. Control Optim., 59 (2019), 3860–3886. https://doi.org/10.1137/20M1382106 doi: 10.1137/20M1382106
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1061) PDF downloads(49) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog