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1. Introduction

Bellman dynamic programming principle [1] and Pontryagin maximum principle [2] serve as two
of the most important tools in solving optimal control problems with time consistency (i.e., classical
optimal control problems). However, as times goes by, the cost functional and control systems of
optimal control problems with time inconsistency is changing, which makes these two methods are
not suitable for such problems. Thus, to explore optimal control problems with time inconsistency,
we adopt a game theoretic approach. The notion of “equilibrium” are therefore considered instead of
“optimization”.

Actually, the research on time-inconsistent problems has a long history. The study of qualitative
analysis on time-inconsistent behavior was carried out by Hume [3] in 1739 and by Smith [4] in
1759. These were then alluded to by Malthus in 1828, Pareto [5] in 1909, and Samuelson [6] in
1937. But until 1955, Strotz [7] in his milestone paper presented the mathematical formulation of the
time-inconsistent problems. After that, the research on time-inconsistent problems is mainly divided
into empirical research and theoretical research. The classical literature of empirical research includes
the endowment theory of Thaler [8], the dynamic inconsistent theory of Kydland and Prescott [9] and
the prospect theory of Kahneman and Tversky [10], who were Nobel Prize winners of economics in
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2017, 2004 and 2002, respectively.
In the literature on optimal control problems with time inconsistency, a large number of mathemati-

cians and behavioral finance scientists have carried out research on theoretical research and obtained
rich research results. The authors first introduced the definition of feedback equilibrium control in [11]
and characterized differentiable sub-game perfect equilibria in a continuous time inter-temporal deci-
sion optimization problem with non-constant discounting function. In Björk and Murgoci [12], the
authors generalized the extended HJB equation for a class of general controlled Markov process and a
fairly general cost functional. They also proved that for every time-inconsistent optimal control prob-
lem, there is an associated time-consistent optimal control problem such that the optimal control for
the time-consistent problem coincides with the equilibrium control for the time-inconsistent optimal
control problem. In particular, we refer the reader to [13–15] and the references therein. In the series
of works carried out by Yong and cooperative authors [16–19], the authors performed an alternative
method by partition of time interval and then regarded the time-inconsistent problem as the limit of
the time-consistent problem, and achieved a number of research results. Motivated from optimal con-
trol problems with time inconsistency, Hamaguchi [20] researched the local solvability of a flow of
forward-backward stochastic differential equations by using contraction mapping principle. We refer
the reader to [21–24] for some relevant results.

Different from all the literature above listed, Hu et al. [25, 26] researched the time-inconsistent
stochastic linear quadratic (LQ, for short) control problems. They introduced the concept of equilib-
rium control by the local comparison made between open-loop controls. Using variational method,
they derived the existence and uniqueness for equilibrium control, through a flow of forward-backward
stochastic differential equations. In particular, they found an explicit equilibrium control and proved its
uniqueness when the state is one dimensional and the coefficients in the problem are all deterministic.
Some recent researched devoted to the open-loop equilibrium control can be found in [27–29] and the
references therein.

The necessary and sufficient conditions are the essential characterization of mathematical problems
including optimal control problems. The classical LQ optimal control problems are the equivalent
relationship between control problem, two-point boundary value problem, and Riccati equation. In
particular, we would like to mention the work of Peng et al. in a very recent paper [30], they stud-
ied the equivalent relationship between equilibrium control, two-point boundary problem, and Riccati
equation for the time-inconsistent deterministic LQ control. Additionally, He and Jiang [31] formally
acquired a necessary and sufficient condition by a method of extended HJB equations on the equilib-
rium strategies for time-inconsistent problems in continuous time.

Inspired by the above works, using the method of duality analysis, we study the necessary and suf-
ficient conditions of optimal control problems with time inconsistency in the framework of open-loop
equilibrium control in this paper. Furthermore, under the assumption of the solvability for the Riccati
type equation, we investigate the existence of explicit equilibrium control by proving the solvability of
two-point boundary value problem.

The remainder of this paper is organized as follows. In the second section, we formulate the math-
ematical model for a general class of optimal control problem with time inconsistency and introduce
the definition of equilibrium control in the sense of open-loop. Section 3 is devoted to present the
main results for a general class of optimal control problem with time inconsistency. In Section 4, we
consider LQ optimal control problem with time inconsistency.
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2. Problem setting

Starting with an optimal control problem with time inconsistency. Let T > 0 be the end of a finite
time horizon and U ⊂ Rm. For any initial pair (t, x) ∈ [0,T ] × Rn, the following controlled system can
be considered. {

Ẏ(s) = h (s,Y(s), u(s)) , s ∈ [t,T ],
Y(t) = x,

(2.1)

where h : [0,T ] × Rn × U → Rn is a given map, u(·), a function valued in U, represents control, and
Y(·) ∈ Rn represents the control trajectory. The control processes which are essentially bounded with
respect to t, i.e.,

U[0,T ] = L∞ ([0,T ]; U) .

Subsequently, the following cost functional can be introduced.

K(t, x; u(·)) =

∫ T

t
φ (t, x; s,Y(s), u(s)) ds + ψ (t, x; Y(T )) . (2.2)

for some given maps φ : [0,T ] × Rn × [0,T ] × Rn ×U → R and ψ : [0,T ] × Rn × Rn → R. Under some
mild conditions, for any (t, x) ∈ [0,T ] × Rn and u(·) ∈ U[t,T ], the state equation (2.1) admits a unique
solution Y(·) ≡ Yu

t,x(·), and the cost functional K (t, x; u(·)) is well-defined. Thus, the following problem
can be introduced.
Problem (TIP). For (t, x) ∈ [0,T ] × Rn, find a control ū(·) ∈ U[t,T ] such that

K (t, x; ū(·)) = inf
u(·)∈U[t,T ]

K (t, x; u(·)) . (2.3)

Problem (TIP) is an optimal control problem with time inconsistency. With the time inconsistency,
the notion “optimality” needs to be defined in an appropriate way. We adopt the concept of equilibrium
solution within the framework of open-loop in this paper.
Definition 2.1. [25] Let ū(·) ∈ U[0,T ] be a given control and Ȳ(·) be the control trajectory correspond-
ing to ū(·). The control ū(·) is called an equilibrium control if the following inequality holds

lim
ε↘0

K
(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)
ε

≥ 0, ∀(t, v) ∈ [0,T ] × U, (2.4)

where

uε,t,v(s) =


ū(s), 0 ≤ s ≤ t,

v, t < s ≤ t + ε,

ū(s), t + ε < s ≤ T.

(2.5)

In this paper, | · | represents an Euclidean norm.
Next, we make the following assumptions.
[H] 1) The map h(s, y, u) : [0,T ] × Rn × U → Rn be continuous, and h(s, y, u) be also continuous

differential with respect to y. There exists a constant L > 0 such that{
| h(s, y1, u1) − h(s, y2, u2) |≤ L (| y1 − y2| + |u1 − u2 |) ,
| h(s, 0, u) |≤ L,

(2.6)
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and {
| hy(s, y1, u) − hy(s, y2, u) |≤ L | y1 − y2 |,

| hy(s, 0, u) |≤ L,
(2.7)

for any s ∈ [0,T ], y1, y2 ∈ Rn, and u, u1, u2 ∈ U.
2) The maps φ(t, x; s, y, u) : [0,T ] × Rn × [0,T ] × Rn × U → R and ψ : [0,T ] × Rn × Rn → R are

continuous, and φ and ψ are also continuous differential with respect to y. There exists a constant L > 0
such that {

| φy(t, x; s, y1, u) − φy(t, x; s, y2, u) |≤ L|y1 − y2|,

| φy(t, x; s, 0, u) |≤ L,
(2.8)

and {
| ψy(t, x; y1) − ψy(t, x; y2) |≤ L | y1 − y2 |,

| ψy(t, x; 0) |≤ L,
(2.9)

for any s ∈ [t,T ], y1, y2 ∈ Rn, and u ∈ U.

3. Equilibrium control

In this section, we present a general necessary and sufficient condition of equilibrium control for
the Problem (TIP).

Let ū(·) is a given control and consider the perturbation control uε,t,v(·) defined by (2.5). Yε(·) and
Ȳ(·) be corresponding control processes to the control system (2.1) with uε,t,v(·) and ū(·), respectively.
We then introduce the following notations.

Φε(s, τ) = exp
[∫ s

τ

∫ 1

0
hy

(
r, Ȳ(r) + θ

(
Yε(r) − Ȳ(r)

)
, ū(r)

)
dθdr

]
,

Φ(s, τ) = exp
[∫ s

τ

hy

(
r, Ȳ(r), ū(r)

)
dr

]
,

(3.1)

for any 0 ≤ τ ≤ s ≤ T . And

ϕε(τ) =

∫ T

τ

Φ>ε (s, τ)
∫ 1

0
φy

(
t, Ȳ(t); s, Ȳ(s) + θ

(
Yε(s) − Ȳ(s)

)
, ū(s)

)
dθds

+ Φ>ε (T, τ)
∫ 1

0
ψy

(
t, Ȳ(t); Ȳ(T ) + θ

(
Yε(T ) − Ȳ(T )

))
dθ,

ϕ(τ) =

∫ T

τ

Φ>(s, τ)φy

(
t, Ȳ(t); s, Ȳ(s), ū(s)

)
ds + Φ>(T, τ)ψy

(
t, Ȳ(t); Ȳ(T )

)
,

(3.2)

for any 0 ≤ τ ≤ T .
Proposition 3.1. Let [H] hold. Then

1) Φε(·, ·) and Φ(·, ·) are uniform bounded in C ([0,T ] × [0,T ]).
2) Φε(·, ·) −→ Φ(·, ·) a.e. in C ([0,T ] × [0,T ]) as ε→ 0.
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Proof. Let Yε(·) and Ȳ(·) be the corresponding solutions to the control system (2.1) with uε,t,v(·) and
ū(·), respectively, where uε,t,v(·) is defined by (2.5) and ū(·) is a given control. Define

Ȳ(s) = x +

∫ s

t
h
(
τ, Ȳ(τ), ū(τ)

)
dτ, s ∈ [t,T ],

Yε(s) = x +

∫ s

t
h
(
τ,Yε(τ), uε,t,v(τ)

)
dτ, s ∈ [t,T ].

Then,

| Ȳ(s) | ≤| x | +
∫ s

t
| h

(
τ, Ȳ(τ), u(τ)

)
| dτ

≤| x | +
∫ s

t
| h

(
τ, Ȳ(τ), ū(τ)

)
− h (τ, 0, ū(τ)) | ds +

∫ s

t
| h (τ, 0, ū(τ)) | dτ

≤| x | +L
∫ s

t
| Ȳ(τ) | ds +

∫ s

t
Lds

≤| x | +LT + L
∫ s

t
| Ȳ(τ) | dτ.

By Gronwall’s inequality, one has

| Ȳ(τ) |≤ (| x | +LT ) eLT . (3.3)

Similarly, we obtain that

| Yε(τ) |≤ (| x | +LT ) eLT . (3.4)

Moreover,

| Yε(s) − Ȳ(s) |≤
∫ s

t
| h

(
τ,Yε(τ), uε,t,v(τ)

)
− h

(
τ, Ȳ(τ), ū(τ)

)
| dτ

≤

∫ s

t
L
(
| Yε(τ) − Ȳ(τ)| + |uε,t,v(τ) − ū(τ) |

)
dτ.

Because ∫ s

t
| uε,t,v(τ) − ū(τ) | dτ =


∫ s

t
| v − ū(τ) | dτ, s ∈ [t, t + ε],∫ t+ε

t
| v − ū(τ) | dτ, s ∈ (t + ε,T ].

Since u(·) ∈ L∞ ([t,T ]; U) for any t ∈ [0,T ], there is a constant M > 0 such that∫ s

t
| uε,t,v(τ) − ū(τ) | dτ ≤

∫ t+ε

t
| v − ū(τ) | dτ ≤ 2Mε a.e. in [0,T ]. (3.5)

Gronwall’s inequality yields

| Yε(s) − Ȳ(s) |≤
∫ s

t
e
∫ s
τ

LdrL
(
| uε,t,v(τ) − ū(τ) |

)
dτ ≤ 2MLeLTε a.e. in [0,T ].
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Passing to the limit in above as ε→ 0 we obtain

Yε(·)→ Ȳ(·) a.e. in [0,T ]. (3.6)

Therefore, we have

Φε(s, τ)

=exp
{ ∫ s

τ

∫ 1

0

{ [
hy

(
r, Ȳ(r) + θ

(
Yε(r) − Ȳ(r)

)
, ū(r)

)
− hy

(
r, Ȳ(r), ū(r)

)]
+

[
hy

(
r, Ȳ(r), ū(r)

)
− hy (r, 0, ū(r))

]
+ hy (r, 0, ū(r))

}
dθdr

}
.

Combining (3.3) and (3.4), we then have

| Φε(s, τ) |

≤exp
{ ∫ s

τ

∫ 1

0
| hy

(
r, Ȳ(r) + θ

(
Yε(r) − Ȳ(r)

)
, ū(r)

)
− hy

(
r, Ȳ(r), ū(r)

)
|

+ | hy

(
r, Ȳ(r), ū(r)

)
− hy (r, 0, ū(r)) | + | hy (r, 0, ū(r)) |}dθdr

}
≤exp

{ ∫ s

τ

∫ 1

0

{
Lθ | Yε(r) − Ȳ(r) | +L | Ȳ(r) | +L

}
dθdr

}
≤exp

{ ∫ s

τ

{
L | Yε(r) − Ȳ(r) | +L | Ȳ(r) | +L

}
dr

}
≤exp

∫ s

τ

{
2L (| x | +LT ) eLT + L (| x | +LT ) eLT + L

}
dr

≤exp
[
2L (| x | +LT ) eLT + L (| x | +LT ) eLT + L

]
T

=exp
[
3L (| x | +LT ) eLT + L

]
T.

This is implies that Φε(·, ·) is uniform bounded in C ([0,T ] × [0,T ]). Similarly, we can easy prove
Φ(·, ·) is uniform bounded in C ([0,T ] × [0,T ]). We thus completes the proof of (1).

We now claim that Φε(·, ·)→ Φ(·, ·) a.e. in C ([0,T ] × [0,T ]) as ε→ 0. Since

Φε(s, τ) − Φ(s, τ)

=exp
{ ∫ s

τ

∫ 1

0

[
hy

(
r, Ȳ(r) + θ

(
Yε(r) − Ȳ(r)

)
, ū(r)

)]
dθdr

}
− Φ(s, τ)

=exp
{ ∫ s

τ

∫ 1

0

[
hy

(
r, Ȳ(r) + θ

(
Yε(r) − Ȳ(r)

)
, ū(r)

)
− hy

(
r, Ȳ(r), ū(r)

)
+ hy

(
r, Ȳ(r), ū(r)

) ]
dθdr

}
− Φ(s, τ)

=exp
{ ∫ s

τ

∫ 1

0

[
hy

(
r, Ȳ(r) + θ

(
Yε(r) − Ȳ(r)

)
, ū(r)

)
− hy

(
r, Ȳ(r), ū(r)

) ]
dθdr

}
· Φ(s, τ)

− Φ(s, τ)

=
{
exp

{ ∫ s

τ

∫ 1

0

[
hy

(
r, Ȳ(r) + θ

(
Yε(r) − Ȳ(r)

)
, ū(r)

)
− hy

(
r, Ȳ(r), ū(r)

)]
dθdr

}
− Φ(s, s)

}
· Φ(s, τ),
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which suggests that

| Φε(s, τ) − Φ(s, τ) |

≤

[
exp

(∫ s

τ

∫ 1

0
Lθ | Yε(r) − Ȳ(r) | dθdr

)
− | Φ(s, s) |

]
· | Φ(s, τ) |

≤

[
exp

(∫ s

τ

L | Yε(r) − Ȳ(r) | dr
)
− 1

]
· | Φ(s, τ) | .

It follows from (3.6) and uniform boundedness of Φ(·, ·) that

| Φε(s, τ) − Φ(s, τ) |→| e0 − 1 | · | Φ(s, τ) |= 0 as ε→ 0.

This implies that (2) holds. We thus complete the proof.

Proposition 3.2. Let [H] hold. Then

ϕε(·) −→ ϕ(·) a.e. in C ([0,T ]) as ε→ 0.

Proof. By (3.2), we have

ϕε(τ) − ϕ(τ)

=

∫ T

τ

Φ>ε (s, τ)
∫ 1

0
φy

(
t, Ȳ(t); s, Ȳ(s) + θ

(
Yε(s) − Ȳ(s)

)
, ū(s)

)
dθds

−

∫ T

τ

Φ>(s, τ)φy

(
t, Ȳ(t); s, Ȳ(s), ū(s)

)
ds

+ Φ>ε (T, τ)
∫ 1

0
ψy

(
t, Ȳ(t); Ȳ(T ) + θ

(
Yε(T ) − Ȳ(T )

))
dθ

− Φ>(T, τ)ψy

(
t, Ȳ(t); Ȳ(T )

)
=

∫ T

τ

Φ>ε (s, τ)
∫ 1

0

[
φy

(
t, Ȳ(t); s, Ȳ(s) + θ

(
Yε(s) − Ȳ(s)

)
, ū(s)

)
− φy

(
t, Ȳ(t); s, Ȳ(s), ū(s)

) ]
dθds

+

∫ T

τ

[
Φε(s, τ) − Φ(s, τ)

]>[
φy

(
t, Ȳ(t); s, Ȳ(s), ū(s)

)
− φy

(
t, Ȳ(t); s, 0, ū(s)

)
+ φy

(
t, Ȳ(t); s, 0, ū(s)

) ]
ds

+ Φ>ε (T, τ)
∫ 1

0

[
ψy

(
t, Ȳ(t); Ȳ(T ) + θ

(
Yε(T ) − Ȳ(T )

))
− ψy

(
t, Ȳ(t); Ȳ(T )

) ]
dθ

+
[
Φε(T, τ) − Φ(T, τ)

]>[
ψy

(
t, Ȳ(t); Ȳ(T )

)
− ψy

(
t, Ȳ(t); 0

)
+ ψy

(
t, Ȳ(t); 0

) ]
,
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which implies that

| ϕε(τ) − ϕ(τ) |

≤

∫ T

τ

∫ 1

0
| Φε(s, τ) | ·Lθ | Yε(s) − Ȳ(s) | dθds

+

∫ T

τ

| Φε(s, τ) − Φ(s, τ) | ·L
(
| Ȳ(s) + 1 |

)
ds

+

∫ 1

0
| Φε(T, τ) | ·Lθ | Yε(T ) − Ȳ(T ) | dθ+ | Φε(T, τ) − Φ(T, τ) | ·L

(
| Ȳ(T ) | +1

)
≤

∫ T

τ

| Φε(s, τ) | ·L | Yε(s) − Ȳ(s) | ds +

∫ T

τ

| Φε(s, τ) − Φ(s, τ) | ·L
(
| Ȳ(s) + 1 |

)
ds

+ | Φε(T, τ) | ·L | Yε(T ) − Ȳ(T ) | + | Φε(T, τ) − Φ(T, τ) | ·L
(
| Ȳ(T ) | +1

)
.

It follows from Proposition 3.1, (3.3) and (3.6) that

| ϕε(τ) − ϕ(τ) |→0 a.e. as ε→ 0.

This completes the proof.

Theorem 3.3. Let [H] hold. Then Problem(TIP) admits an equilibrium control by Definition 2.1 if and
only if the following quasi-variational problem

Ȳ(t) = y0 +

∫ t

0
h
(
s, Ȳ(s), ū(s)

)
ds,

ω(t) =

∫ T

t
Φ>(s, t)φY

(
t, Ȳ(t); s, Ȳ(s), ū(s)

)
ds + Φ>(T, t)ψY

(
t, Ȳ(t); Ȳ(T )

)
,

ū(t) ∈ arg min
v∈U

H
(
t, Ȳ(t); t, Ȳ(t), v, ω(t)

)
,

(3.7)

have a solution in C ([0,T ]; Rn) ×C ([0,T ]; Rn), where

H(t, x; s, y, u, p) = 〈p, h(s, x, u)〉 + φ(t, x; s, y, u), (3.8)

for any (t, x; s, y, u, p) ∈ [0,T ] × Rn × [0,T ] × Rn × U × Rn.

Proof. Let ū(·) is a given control and uε,t,v(·) is defined by (2.5), Yε(·) and Ȳ(·) are the corresponding
control processes to the control system (2.1) with uε,t,v(·) and ū(·), respectively. Then we have

Ȳ(s) = y0 +

∫ s

0
h
(
τ, Ȳ(τ), ū(τ)

)
dτ, s ∈ [0,T ],

Yε(s) = y0 +

∫ s

0
h
(
τ,Yε(τ), uε,t,v(τ)

)
dτ, s ∈ [0,T ].

Define
Zε(s) =

1
ε

[
Yε(s) − Ȳ(s)

]
, s ∈ [0,T ]. (3.9)
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This implies that Zε(0) = 0 and

Zε(s) =


0, s ∈ [0, t],
1
ε

∫ s

t
Φε(s, τ) [h (τ,Yε(τ), v) − h (τ,Yε(τ), ū(τ))] dτ, s ∈ (t, t + ε],

Φε(s, t + ε)Zε(t + ε), s ∈ (t + ε,T ].

(3.10)

Now, we evaluate limε↘0
K(t,Ȳ(t);uε,t,v(·))−K(t,Ȳ(t);ū(·))

ε
. It follows from (2.2) and (2.5) that

K
(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)
ε

=
1
ε

∫ t+ε

t

[
φ
(
t, Ȳ(t); s,Yε(s), v

)
− φ

(
t, Ȳ(t); s, Ȳ(s), ū(s)

)]
ds

+

∫ T

t+ε

〈∫ 1

0
φY

(
t, Ȳ(t); s, Ȳ(s) + θεZε(s), ū(s)

)
dθ,Zε(s)

〉
ds

+

〈∫ 1

0
ψY

(
t, Ȳ(t); Ȳ(T ) + θεZε(T )

)
dθ,Zε(T )

〉
.

Plugging (3.10) into the above, we obtain that

K
(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)
ε

=
1
ε

∫ t+ε

t

[
φ
(
t, Ȳ(t); s,Yε(s), v

)
− φ

(
t, Ȳ(t); s,Yε(s), ū(s)

)]
ds

+
1
ε

∫ t+ε

t

〈 ∫ T

t+ε
Φ>ε (s, τ)

∫ 1

0
φY

(
t, Ȳ(t); s, Ȳ(s) + θεZε(s), ū(s)

)
dθds,

h (τ,Yε(τ), v) − h (τ,Yε(τ), ū(τ))
〉
dτ

+
1
ε

∫ t+ε

t

〈
Φ>ε (T, τ)

∫ 1

0
ψY

(
t, Ȳ(t); Ȳ(T ) + θεZε(T )

)
dθ,

h (τ,Yε(τ), v) − h (τ,Yε(τ), ū(τ))
〉
dτ.

Combining (3.8), (3.6) and Proposition 3.2, we then have

lim
ε↘0

K
(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)
ε

=H
(
t, Ȳ(t); t, Ȳ(t), v, ω(t)

)
− H

(
t, Ȳ(t); t, Ȳ(t), ū(t), ω(t)

)
, a.e. t ∈ [0,T ].

(3.11)

On the one hand, if ū(·) is an equilibrium control, then

H
(
t, Ȳ(t); t, Ȳ(t), v, ω(t)

)
≥ H

(
t, Ȳ(t); t, Ȳ(t), ū(t), ω(t)

)
, a.e. t ∈ [0,T ].

This implies that
ū(·) ∈ arg min

v∈U
H

(
t, Ȳ(t); t, Ȳ(t), v, ω(t)

)
, ∀t ∈ [0,T ]. (3.12)
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This completes the proof of necessary.
Conversely, assume

(
Ȳ(·), ω(·)

)
∈ C ([0,T ]; Rn) × C ([0,T ]; Rn) be the solution of (3.7). Let ū(·)

given by (3.7), we claim ū(·) is an equilibrium control. We consider the perturbation control uε,t,v(·)
given by (2.5). Similarly to the calculation of (3.11), we can obtain that

lim
ε↘0

1
ε

[
K

(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)]
=H

(
t, Ȳ(t); t, Ȳ(t), v, ω(t)

)
− H

(
t, Ȳ(t); t, Ȳ(t), ū(t), ω(t)

)
, a.e. t ∈ [0,T ].

(3.13)

By (3.12), we have

H
(
t, Ȳ(t); t, Ȳ(t), v, ω(t)

)
− H

(
t, Ȳ(t); t, Ȳ(t), ū(t), ω(t)

)
≥ 0, ∀t ∈ [0,T ].

Therefore,

lim
ε↘0

1
ε

[
K

(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)]
≥ 0.

We thus complete the proof.

4. LQ optimal control problem with time inconsistency

As application, we study an LQ optimal control problem with time inconsistency in this section.
We use the following notations is this section.

U[0,T ] = L2 ([0,T ]; Rm) .

D[0,T ] =
{
(t, s) ∈ [0,T ]2 | 0 ≤ t ≤ s ≤ T

}
.

ΦA(s, t) = exp
{∫ s

t
A(r)dr

}
,∀t, s ∈ [0,T ].

Now, we make the following standard assumptions:
(Q1) A ∈ L1 ([0,T ]; Rn×n), B ∈ L2 ([0,T ]; Rn×m).
(Q2) M ∈ C (D[0,T ];Sm) is symmetry and positive definite.
(Q3) L ∈ C (D[0,T ];Sn), N ∈ C ([0,T ];Sn) are symmetry and positive semi-definite.
(Q4) For 0 ≤ t ≤ s ≤ T , Ṅ(t) and Lt(t, s) are symmetry and positive semi-definite. Here

Lt(t, s) =
∂L
∂t

(t, s).

We consider the following LQ optimal control system from the situation (t, x) ∈ [0,T ] × Rn.{
Ẏ(s) = A(s)Y(s) + B(s)u(s), s ∈ [t,T ],
Y(t) = x,

(4.1)
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with the following cost functional

K (t, x; u(·)) =

∫ T

t
[〈L(t, s)Y(s),Y(s)〉 + 〈M(t, s)u(s), u(s)〉] ds

+ 〈N(t)Y(T ),Y(T )〉 .
(4.2)

One could introduce the following control problem.
Problem (TILQ). For (t, x) ∈ [0,T ] × Rn. Find a control ū(·) ∈ U[0,T ] such that

K (t, x; ū(·)) = inf
L2([0,T ];Rm)

K (t, x; u(·)) . (4.3)

Problem (TILQ) is an LQ optimal control problem with time inconsistency.
Theorem 4.1. Let (Q1)–(Q4) hold. Then Problem (TILQ) admits an equilibrium control by Definition
2.1 if and only if the following two-point boundary value problem

Ȳ(t) = ΦA(t, 0)y0 +

∫ t

0
ΦA(t, τ)B(τ)ū(τ)dτ,

$(t) =

∫ T

t
Φ>A(s, t)L(t, s)Ȳ(s)ds + Φ>A(T, t)N(t)Ȳ(T ),

∀t ∈ [0,T ], (4.4)

have a solution in C ([0,T ]; Rn) ×C ([0,T ]; Rn) and equilibrium control ū(·) is given by

ū(t) = −M−1(t, t)B>(t)$(t), ∀t ∈ [0,T ]. (4.5)

Proof. Let Ȳ(·) and Yε(·) be the corresponding state trajectory to the control system (4.1) with ū(·) and
uε,t,v(·), respectively, where ū(·) is a given control and uε,t,v(·) is defined by (2.5). It is easy to prove that

Yε(·)→ Ȳ(·) in C ([0,T ]; Rn) as ε→ 0. (4.6)

Let
Zε(s) =

1
ε

[
Yε(s) − Ȳ(s)

]
, s ∈ [0,T ]. (4.7)

Then Zε(0) = 0 and

Zε(s) =



0, s ∈ [0, t],
1
ε

∫ s

t
ΦA(s, τ)B(τ) [v − ū(τ)] dτ, s ∈ (t, t + ε],

1
ε

∫ t+ε

t
ΦA(s, τ)B(τ) [v − ū(τ)] dτ, s ∈ (t + ε,T ].

(4.8)

Now, we evaluate the variation of the cost functional. It follows from (4.2) and (2.5) that

K
(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)
ε

=
1
ε

∫ t+ε

t
〈M(t, s) [v + ū(s)] , v − ū(s)〉 ds

+
1
ε

∫ T

t

〈
L(t, s)

[
Yε(s) + Ȳ(s)

]
,Yε(s) − Ȳ(s)

〉
ds

+
1
ε

〈
N(t)

[
Yε(T ) + Ȳ(T )

]
,Yε(T ) − Ȳ(T )

〉
.
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Plugging (4.8) into the above, we can have

K
(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)
ε

=
1
ε

∫ t+ε

t
〈M(t, s) [v + ū(s)] , v − ū(s)〉 ds

+
1
ε

∫ t+ε

t

〈
B>(τ)

∫ T

τ

Φ>A(s, τ)L(t, s)
[
Yε(s) + Ȳ(s)

]
ds, v − ū(τ)

〉
dτ

+
1
ε

∫ t+ε

t

〈
B>(τ)Φ>A(T, τ)N(t)

[
Yε(T ) + Ȳ(T )

]
, v − ū(τ)

〉
dτ.

It follows from (4.6) and (4.4) that

lim
ε↘0

K
(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)
ε

=
〈
2B>(t)$(t) + M(t, t) [v + ū(t)] , v − ū(t)

〉
. (4.9)

This implies that

lim
ε↘0

K(t, Ȳ(t); uε,t,v(·)) − K(t, Ȳ(t); ū(·))
ε

=
〈
M(t, t)

[
v + ū(t) + 2M−1(t, t)B>(t)$(t)

]
, v − ū(t)

〉
≥ 0

(4.10)

for any (t, v) ∈ [0,T ] × Rm. We thus prove that ū(t) = −M−1(t, t)B>(t)$(t) is an equilibrium control by
using the positive definiteness of the matrix-value function M.

Conversely, suppose that Problem (TILQ) have an equilibrium control ū(·) and uε,t,v(·) is defined by
(2.5). Let Ȳ(·) and Yε(·) be the corresponding state trajectory to the control system (4.1) with ū(·) and
uε,t,v(·), respectively. Define

$̃(t) =

∫ T

t
Φ>A(s, t)L(t, s)Ȳ(s)ds + Φ>A(T, t)N(t)Ȳ(T ). (4.11)

Similarly to the computation of the (4.9), we have

lim
ε↘0

K
(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)
ε

=
〈
M(t, t) [v + ū(t)] + 2B>(t)$̃(t), v − ū(t)

〉
, ∀(t, v) ∈ [0,T ] × Rm.

(4.12)

Define

K̃
(
t, Ȳ(t); v

)
≡ lim

ε↘0

K
(
t, Ȳ(t); uε,t,v(·)

)
− K

(
t, Ȳ(t); ū(·)

)
ε

, ∀(t, v) ∈ [0,T ] × Rm.

It follows from (4.12) that K̃
(
t, Ȳ(t); v

)
is strictly convex in v. Therefore, the definition of an equi-

librium control yields that K̃
(
t, Ȳ(t); v

)
≥ 0, which, together with (4.12), we obtain that K̃

(
t, Ȳ(t); v

)
admits a unique minimum point ṽ given by

ṽ = −M−1(t, t)B>(t)$̃(t), ∀t ∈ [0,T ].
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Then the uniqueness of the minimum point ṽ yields that

ū(t) = −M−1(t, t)B>(t)$̃(t), ∀t ∈ [0,T ]. (4.13)

Combining (4.13) and (4.1), we then have ˙̄Y(t) = A(t)Ȳ(t) − B(t)M−1(t, t)B>(t)$̃(t),
Ȳ(0) = y0.

(4.14)

Thus, the differential equation (4.14) admits a unique solution Ȳ(·) given by

Ȳ(t) = ΦA(t, 0)y0 −

∫ t

0
ΦA(t, τ)B(τ)M−1(τ, τ)B>(τ)$̃(τ)dτ. (4.15)

Plugging (4.15) into (4.11), we have

$̃(t) =

∫ T

t
Φ>A(s, t)L(t, s)Ỹ(s)ds + Φ>A(T, t)N(t)Ỹ(T ). (4.16)

Combining (4.15) and (4.16), we completes the proof.

We now consider the solvability of the two-point boundary value problem (4.4). We introduce the
following Riccati type equation: Γ̇(t) + Γ(t)A(t) + AT (t)Γ(t) + L̄(t, t) − Γ(t)B(t)M−1(t, t)B>(t)Γ(t) = 0, t ∈ [0,T ],

Γ(T ) = N(T ),
(4.17)

where

L̄(t, t) = L(t, t) − Φ>A(T, t)Ṅ(t)Φ̂(T, t) −
∫ T

t
Φ>A(τ, t)Lt(t, τ)Φ̂(τ, t)dτ.

Here

Φ̂(τ, t) = exp
{∫ τ

t

[
A(r) − B(r)M−1(r)B>(r)Γ(r)

]
dr

}
, (4.18)

for any 0 ≤ t ≤ τ ≤ T . Observe that Φ̂(·, ·) depends on the unknown term Γ(·). Moreover, the Riccati
type equation (4.17) is different from that of [30]. Therefore the results in [30] cannot be applied
directly to (4.17) for its well posedness.

It is also worth pointing out that (4.17) does not have a symmetric structure. Thus Γ(·) is not
expected to be symmetric.
Theorem 4.2. Let Assumptions (Q1)− (Q4) hold. Suppose that the Riccati type equation (4.17) admits
a unique solution Γ(·) ∈ C ([0,T ]; Rn×n). Then the two-point boundary value problem (4.4) admits a
solution

(
Ȳ(·), $(·)

)
∈ C ([0,T ]; Rn) ×C ([0,T ]; Rn). Furthermore, for any t ∈ [0,T ], we have

Ȳ(t) = Φ̂(t, 0)y0, (4.19)

$(t) = Γ(t)Ȳ(t), (4.20)

ū(t) = −M−1(t, t)B>(t)Γ(t)Ȳ(t), (4.21)

where Φ̂(t, 0) is as introduced in (4.18).
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Proof. Suppose that Γ(·) ∈ C ([0,T ]; Rn×n) is a solution of (4.17) and define
(
Ȳ(·), $(·), ū(·)

)
as in

(4.19)–(4.21). We are going to show that Ȳ(·) and $(·) satisfy the two-point boundary value problem
(4.4). First, observe that Ȳ(·) satisfies the following ODE, ˙̄Y(t) =

[
A(t) − B(t)M−1(t, t)B>(t)Γ(t)

]
Ȳ(t) = A(t)Ȳ(t) + B(t)ū(t), t ∈ [0,T ],

Ȳ(0) = y0.
(4.22)

On the other hand, differentiating both sides of (4.20) with respect to t, we obtain that

$̇(t) =Γ̇(t)Ȳ(t) + Γ(t) ˙̄Y(t)

= −
[
Γ(t)A(t) + AT (t)Γ(t) + L̄(t, t) − Γ(t)B(t)M−1(t, t)B>(t)Γ(t)

]
Ȳ(t)

+ Γ(t)
[
A(t) − B(t)M−1(t, t)B>(t)Γ(t)

]
Ȳ(t)

= − A>(t)Γ(t)Ȳ(t) − L̄(t, t)Ȳ(t),

which implies that

$(t) =Φ>A(T, t)N(T )Ȳ(T ) +

∫ T

t
Φ>A(τ, t)L̄(τ, τ)Ȳ(τ)dτ

=Φ>A(T, t)N(T )Ȳ(T ) −
∫ T

t
Φ>A(τ, t)Φ>A(T, τ)Ṅ(τ)Φ̂(T, τ)Ȳ(τ)dτ

+

∫ T

t
Φ>A(τ, t)

[
L(τ, τ) −

∫ T

τ

Φ>A(s, τ)Lt(τ, s)Φ̂(s, τ)ds
]

Ȳ(τ)dτ

=Φ>A(T, t)
[
N(T ) −

∫ T

t
Ṅ(τ)dτ

]
Ȳ(T )

+

∫ T

t
Φ>A(τ, t)L(τ, τ)Ȳ(τ)dτ −

∫ T

t

∫ T

τ

Φ>A(τ, t)Φ>A(s, τ)Lt(τ, s)Φ̂(s, τ)Ȳ(τ)dsdτ.

(4.23)

Observe that ∫ T

t
Φ>A(τ, t)L(τ, τ)Ȳ(τ)dτ −

∫ T

t

∫ T

τ

Φ>A(τ, t)Φ>A(s, τ)Lt(τ, s)Φ̂(s, τ)Ȳ(τ)dsdτ

=

∫ T

t
Φ>A(τ, t)L(τ, τ)Ȳ(τ)dτ −

∫ T

t

∫ T

τ

Φ>A(s, t)Lt(τ, s)Ȳ(s)dsdτ

=

∫ T

t
Φ>A(s, t)L(s, s)Ȳ(s)ds −

∫ T

t
Φ>A(s, t)

∫ s

t
Lt(τ, s)dτȲ(s)ds

=

∫ T

t
Φ>A(s, t)

[
L(s, s) −

∫ s

t
Lt(τ, s)dτ

]
Ȳ(s)ds

=

∫ T

t
Φ>A(s, t)L(t, s)Ȳ(s)ds.

Invoking this into (4.23), we obtain that

$(t) = Φ>A(T, t)N(t)Ȳ(T ) +

∫ T

t
Φ>A(s, t)L(t, s)Ȳ(s)ds. (4.24)
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It follows from (4.22) and (4.24) that the two-point boundary value problem (4.4) admits a solution in
C ([0,T ]; Rn) ×C ([0,T ]; Rn).This completes the proof.

Combining Theorem 4.1 with Theorem 4.2, we obtain the following result.
Corollary 4.3. Let Assumptions (Q1)–(Q4) hold. Suppose that the Riccati type equation (4.17) admits
a unique solution Γ(·) ∈ C ([0,T ]; Rn×n). Then Problem (TILQ) has an equilibrium control that can be
represented by the state feedback form

ū(t) = −M−1(t, t)B>(t)Γ(t)Ȳ(t), t ∈ [0,T ].
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