Photoacoustic tomography (PAT) is a novel and rapidly developing technique in the medical imaging field that is based on generating acoustic waves inside of an object of interest by stimulating non-ionizing laser pulses. This acoustic wave was measured by using a detector on the outside of the object it was then converted into an image of the human body after several inversions. Thus, one of the mathematical problems in PAT is reconstructing the initial function from the solution of the wave equation on the outside of the object. In this study, we consider the fractional wave equation and assume that the point-like detectors are located on the sphere and hyperplane. We demonstrate a way to recover the initial function from the data, namely, the solution of the fractional wave equation, measured on the sphere and hyperplane.
Citation: Hyungyeong Jung, Sunghwan Moon. Reconstruction of the initial function from the solution of the fractional wave equation measured in two geometric settings[J]. Electronic Research Archive, 2022, 30(12): 4436-4446. doi: 10.3934/era.2022225
Photoacoustic tomography (PAT) is a novel and rapidly developing technique in the medical imaging field that is based on generating acoustic waves inside of an object of interest by stimulating non-ionizing laser pulses. This acoustic wave was measured by using a detector on the outside of the object it was then converted into an image of the human body after several inversions. Thus, one of the mathematical problems in PAT is reconstructing the initial function from the solution of the wave equation on the outside of the object. In this study, we consider the fractional wave equation and assume that the point-like detectors are located on the sphere and hyperplane. We demonstrate a way to recover the initial function from the data, namely, the solution of the fractional wave equation, measured on the sphere and hyperplane.
[1] | P. Beard, Biomedical photoacoustic imaging, Interface focus, 1 (2011), 602–631. https://doi.org/10.1098/rsfs.2011.0028 doi: 10.1098/rsfs.2011.0028 |
[2] | H. Jiang, Photoacoustic Tomography, 1st Edition, CRC Press, 2018. https://doi.org/10.1201/9781315213903 |
[3] | C. L. Bayer, G. P. Luke, S. Y. Emelianov, Photoacoustic imaging for medical diagnostics, Acoust. Today, 8 (2012), 15–23. https://doi.org/10.1121/1.4788648 doi: 10.1121/1.4788648 |
[4] | A. G. Bell, On the production and reproduction of sound by light, Amer. J. Sci., 20 (1880), 305–324. https://doi.org/10.2475/ajs.s3-20.118.305 doi: 10.2475/ajs.s3-20.118.305 |
[5] | P. Kuchment, The radon transform and medical imaging, Society Indust. Appl. Math., 2013. |
[6] | R. Hilfer, P. L. Butzer, U. Westphal, An introduction to fractional calculus, in Applications of Fractional Calculus in Physics, World Scientific, (2010), 1–85. |
[7] | L. Boyadjiev, Y. Luchko, Multi-dimensional $\alpha$-fractional wave equation and some properties of its fundamental solution, Comput. Math. Appl., 73 (2017), 2561–2572. https://doi.org/10.1016/j.camwa.2017.03.020 doi: 10.1016/j.camwa.2017.03.020 |
[8] | L. Boyadjiev, Y. Luchko, Mellin integral transform approach to analyze the multidimensional diffusion-wave equations, Chaos, Solitons Fractals, 102 (2017), 127–134. https://doi.org/10.1016/j.chaos.2017.03.050 doi: 10.1016/j.chaos.2017.03.050 |
[9] | Y. Luchko, On some new properties of the fundamental solution to the multi-dimensional space-and time-fractional diffusion-wave equation, Mathematics, 5 (2017), 76. https://doi.org/10.3390/math5040076 doi: 10.3390/math5040076 |
[10] | P. Chen, R. Wang, X. Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, Bull. des Sci. Math., 173 (2021), 103071. https://doi.org/10.1016/j.bulsci.2021.103071 doi: 10.1016/j.bulsci.2021.103071 |
[11] | E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. des Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[12] | A. I. Saichev, G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos An Interdiscip. J. Nonlinear Sci., 7 (1997), 753–764. https://doi.org/10.1063/1.166272 doi: 10.1063/1.166272 |
[13] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives-theory and Applications Gordon and Breach, Linghorne, PA, 1993. |
[14] | K. Górska, A. Lattanzi, G Dattoli, Mittag-Leffler function and fractional differential equations, Fract. Calc. Appl. Anal., 21 (2018), 220–236. https://doi.org/10.1515/fca-2018-0014 doi: 10.1515/fca-2018-0014 |
[15] | Y. Luchko, V. Kiryakova. The mellin integral transform in fractional calculus, Fract. Calc. Appl. Anal., 16 (2013), 405–430. https://doi.org/10.2478/s13540-013-0025-8 doi: 10.2478/s13540-013-0025-8 |
[16] | Y. Luchko, Operational calculus for the general fractional derivative and its applications, Fract. Calc. Appl. Anal., 24 (2021), 338–375. https://doi.org/10.1515/fca-2021-0016 doi: 10.1515/fca-2021-0016 |
[17] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. |
[18] | M. A. Anastasio, J. Zhang, D. Modgil, P. J. La Rivière, Application of inverse source concepts to photoacoustic tomography, Inverse Probl., 23 (2007), S21. https://doi.org/10.1088/0266-5611/23/6/S03 doi: 10.1088/0266-5611/23/6/S03 |
[19] | A. L. Bukhgeim, V. B. Kardakov, Solution of the inverse problem for the equation of elastic waves by the method of spherical means, Siberian Math. J., 19 (1978), 528–535. https://doi.org/10.1007/BF00967723 doi: 10.1007/BF00967723 |
[20] | N. Do, L. Kunyansky, Theoretically exact photoacoustic reconstruction from spatially and temporally reduced data, Inverse Probl., 34 (2018), 094004. https://doi.org/10.1088/1361-6420/aacfac doi: 10.1088/1361-6420/aacfac |
[21] | F. Dreier, M. Haltmeier, Explicit inversion formulas for the two-dimensional wave equation from neumann traces, SIAM J. Imaging Sci., 13 (2020), 589-608. https://doi.org/10.1137/19M1260517 doi: 10.1137/19M1260517 |
[22] | D. Finch, M. Haltmeier, Rakesh, Inversion of spherical means and the wave equation in even dimensions, SIAM J. Appl. Math., 68 (2007), 392–412. https://doi.org/10.1137/070682137 doi: 10.1137/070682137 |
[23] | K. Köstli, M. Frenz, H. Bebie, H. Weber, Temporal backward projection of optoacoustic pressure transients using fourier transform methods, Phys. Med. Biol., 46 (2001), 1863. https://doi.org/10.1088/0031-9155/46/7/309 doi: 10.1088/0031-9155/46/7/309 |
[24] | L. A. Kunyansky, Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries, Inverse Probl. Imag., 6 (2012), 111–131. https://doi.org/10.3934/ipi.2012.6.111 doi: 10.3934/ipi.2012.6.111 |
[25] | S. Moon, Inversion formulas and stability estimates of the wave operator onthehyperplane, J. Math. Anal. Appl., 466 (2018), 490–497. https://doi.org/10.1016/j.jmaa.2018.06.006 doi: 10.1016/j.jmaa.2018.06.006 |
[26] | E. K. Narayanan, Rakesh, Spherical means with centers on a hyperplane in even dimensions, Inverse Probl., 26 (2010), 035014. https://doi.org/10.1088/0266-5611/26/3/035014 doi: 10.1088/0266-5611/26/3/035014 |
[27] | G. Thummerer, G. Mayr, M. Haltmeier, P. Burgholzer, Photoacoustic reconstruction from photothermal measurements including prior information, Photoacoustics, 19 (2020), 100175. https://doi.org/10.1016/j.pacs.2020.100175 doi: 10.1016/j.pacs.2020.100175 |
[28] | M. Xu, L, Wang, Universal back-projection algorithm for photoacoustic computed tomography, Phys. Rev. E, 71 (2005), 016706. https://doi.org/10.1103/PhysRevE.71.016706 doi: 10.1103/PhysRevE.71.016706 |
[29] | G. Zangerl, S. Moon, M. Haltmeier, Photoacoustic tomography with direction dependent data: an exact series reconstruction approach, Inverse Probl., 35 (2019), 114005. https://doi.org/10.1088/1361-6420/ab2a30 doi: 10.1088/1361-6420/ab2a30 |
[30] | F. Natterer, The mathematics of computerized tomography, Soc. Ind. Appl. Math., 2001. https://doi.org/10.1137/1.9780898719284 |
[31] | R. T. Seeley, Spherical harmonics, Am. Math. Mon., 73 (1996), 115–121. https://doi.org/10.1080/00029890.1966.11970927 doi: 10.1080/00029890.1966.11970927 |
[32] | G. B. Folland, Fourier Analysis and Its Applications, American Mathematical Soc, 2009. |
[33] | H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011, (2011). https://doi.org/10.1155/2011/298628 doi: 10.1155/2011/298628 |
[34] | R. B. Paris, D. Kaminski, Asymptotics and Mellin-Barnes Integrals, Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511546662 |