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Abstract: Photoacoustic tomography (PAT) is a novel and rapidly developing technique in the medical
imaging field that is based on generating acoustic waves inside of an object of interest by stimulating
non-ionizing laser pulses. This acoustic wave was measured by using a detector on the outside of
the object it was then converted into an image of the human body after several inversions. Thus, one
of the mathematical problems in PAT is reconstructing the initial function from the solution of the
wave equation on the outside of the object. In this study, we consider the fractional wave equation
and assume that the point-like detectors are located on the sphere and hyperplane. We demonstrate a
way to recover the initial function from the data, namely, the solution of the fractional wave equation,
measured on the sphere and hyperplane.
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1. Introduction

Photoacoustic imaging (PAI) is a new biomedical imaging modality that integrates the advantages
of each of the underlying modalities while complementing the problems of optical and ultrasound
imaging. It is a hybrid technology that combines the high-contrast and spectroscopic-based specificity
of optical imaging with the high spatial resolution of ultrasound imaging [1, 2]. PAI capitalizes on
photoacoustic effects to form images of biological tissues without tissue damage. The photoacoustic
effect, discovered by Alexander Graham Bell in 1880, refers to the generation of acoustic waves using
thermal expansion by absorbing electromagnetic waves such as light or radio waves [3, 4].

Photoacoustic tomography (PAT) is a PAI methodology that involves irradiating a non-ionizing
pulse wave within the tissue of a given object of diagnosis to obtain a photoacoustic signal in the
ultrasound range (several MHz to several tens of MHz). The photoacoustic signal is an acoustic signal
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generated during thermal expansion that is produced by irradiating a laser on the tissue that absorbs
the irradiated laser energy. The generated photoacoustic signal is received by an ultrasonic detector
placed near the object. Moreover, the spatial distribution of the pulse energy absorption contains the
diagnostic information; one of our goals was to obtain this distribution from the received signal. The
photoacoustic signal satisfies the wave equation, and its spatial distribution is the initial function.

Regarding the measurement procedures, it is almost impossible to judge which one is best, but the
use of point detectors has been studied both mathematically and experimentally. Hence, in this article,
the detector was assumed to be point-shaped with a sufficiently small dimension. At the time t, the
detector measures the average pressure above the surface S where the detectors are located. At this
time, it can be a reasonable assumption that this average pressure is the value of a pressure wave p(·, t)
for the small size of the transducer. Therefore, the data collected at a position of the detector on the
surface S is consistent with the restriction of p to the surface S [5].

One of the mathematical problems arising in PAT is finding the initial function from the data mea-
sured on the outside of the object and the measurement data satisfying the wave equation. According
to [6, Chapter 3], solutions of fractional order differential equations describe real-life situations bet-
ter than corresponding integer-order differential equations. In this study, we consider the initial value
problem for the fractional wave equation [7–9] as follows:

Dαt pα(x, t) = −(−∆x)
α
2 pα(x, t) (x, t) ∈ Rn × [0,∞), 1 < α ≤ 2

pα(x, 0) = f (x), x ∈ Rn

∂t pα(x, t)|t=0 = 0, x ∈ Rn
(1.1)

where −(−∆x)
α
2 is the Riesz space fractional derivative of order α, as defined below, and Dαt is the

Caputo time-fractional derivative of order α, i.e.,

(Dαt h)(t) := (Im−αh(m))(t), m − 1 < α ≤ m, m ∈ N,

Iα, α ≥ 0 is the Riemann-Liouville fractional integral

(Iαh)(t) :=


1
Γ(α)

t∫
0

(t − τ)α−1h(τ)dτ, if α > 0,

h(t), if α = 0,

and Γ(·) is the gamma function. For α = m, m ∈ N, the Caputo fractional derivative coincides with
the standard derivative of order m. For a smooth function f on Rn with compact support, the Riesz
fractional derivative [10–13] of order α, α ≥ 0 is defined as follows:

F (−(−∆x)
α
2 f )(ξ) := −|ξ|α(F f )(ξ),

where F is the Fourier transform of a function f defined by

(F f )(ξ) :=
∫
Rn

f (x)e−ix·ξdx.

The solution of the fractional wave equation (1.1) is given as follows:

pα(x, t) =
1

(2π)n

∫
Rn

Eα(−tα|ξ|α)eiξ·xF f (ξ)dξ. (1.2)
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Figure 1. PAT detection geometries in R3: (a) spherical and (b) planar.

Here

Eα(z) =
∞∑

k=0

zk

Γ(1 + αk)
, α > 0, z ∈ C,

is the Mittag-Leffler function (for a more detailed explanation, see [14–16]) with

Dαt Eα(−tα|ξ|α) = −|ξ|αEα(−tα|ξ|α) and DtEα(−tα|ξ|α)|t=0 = 0

from [17, Lemma 2.23]. Because E2(−z2) = cos(z) for α = 2, the solution pα of (1.1) reduces to the
solution of the wave equation. Therefore, we focus on the case of 1 < α < 2 because the case of α = 2
has been well studied in many articles [5,18–29]. In this study, we demonstrate how to reconstruct the
initial function f from the measured data, which is the solution pα, 1 < α < 2 of the fractional wave
equation (1.1) restricted to a surface with point-like detectors. To the best of our knowledge, such a
PAT model has been studied here for the first time.

2. Preliminaries

Here, we consider two geometries where point-like detectors are located: spherical and hyperplanar
geometries. As their names imply, in each case, detectors are located on the unit sphere and hyperplane,
respectively (see Figure 1). Our goal was to reconstruct the initial function f from the measurement
data, that is, the solution of (1.1) on two geometries.

In the spherical geometry, the solution pα of (1) is measured on the unit sphere Sn−1 in Rn. Let the
wave forward operatorWS be defined asWS f (θ, t;α) = pα(θ, t), (θ, t) ∈ Sn−1 × [0,∞), where f is an
initial function of (1).

Similar to the spherical geometry, the solution pα of (1) is measured on the hyperplane {x =
(x∗, xn) ∈ Rn : xn = 0, x∗ ∈ Rn−1}. Similarly, let the wave forward operator WH be defined as
WH f (u, t;α) = pα(u, t), (u, t) ∈ Rn−1 × [0,∞), where f is an initial function of (1).

For both geometries, the Mellin transform is essential to finding the initial function f from mea-
surement data. Moreover, spherical harmonics are employed in the spherical geometry. The remainder
of this section is devoted to introducing the Mellin transform and spherical harmonics.

Regarding the Mellin transform, the majority of the Mellin transform is derived from [34, p. 79∼90].
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Let f be a locally integrable function defined on (0,∞). The Mellin transform of f is defined as

M f (s) :=

∞∫
0

f (x)xs−1dx, s ∈ C, (2.1)

when the integral converges. Suppose that

f (x) = O(x−a−ϵ) as x→ 0+ and f (x) = O(x−b+ϵ) as x→ ∞

where O is the Big O notation, ϵ > 0, and a < b. The integral (2.1) converges absolutely and defines
an analytic function in the strip a < Re(s) < b. Furthermore, its inverse transform is given by

f (x) =M−1(M f )(x) =
1

2πi

γ+i∞∫
γ−i∞

M f (s)x−sds, for a < γ < b.

Then, f can be recovered from its Mellin transformM f by using the inverse Mellin transform. The
Mellin transform satisfies the property

M( f × g)(s) =M f (s)Mg(s),

where the convolution is defined by

f × g(x) :=

∞∫
0

f (τ)g
( x
τ

) dτ
τ
. (2.2)

Regarding the spherical harmonics, let Ylk denote the spherical harmonics [30,31] that form a com-
plete orthonormal system in L2(Sn−1). Then, f can be expanded in the spherical harmonics as

f (rxθx) =
∞∑

l=0

N(n,l)∑
k=0

flk(rx)Ylk(θx), for all f ∈ L2(Rn),

where N(n, l) = (2l + n − 2)(n + l − 3)!/(l!(n − 2)!) for l ∈ N and N(n, 0) = 1. Moreover, we use
the spherical harmonics expansions of the measurement dataWS f (θ, t;α) and the Fourier transform
F f (ξ) of the initial function f with ξ = λξωξ, as follows:

WS f (θ, t;α) =
∞∑

l=0

N(n,l)∑
k=0

(WS f )lk(t;α)Ylk(θ), for all (t, θ) ∈ [0,∞) × Sn−1 (2.3)

and

F f (λξωξ) =
∞∑

l=0

N(n,l)∑
k=0

(F f )lk(λξ)Ylk(ωξ), for all (λξ,ωξ) ∈ [0,∞) × Sn−1.

3. Inversion procedure

To recover the initial function, we assume that the point-like detectors are located on the unit sphere
and hyperplane. Below, we provide a method to obtain the initial function f from the solution of the
fractional wave equation measured on two geometries.
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3.1. Spherical geometry

This section demonstrates how to obtain the initial function f fromWS f . From (1.2), the measure-
ment dataWS f are given as

WS f (θ, t;α) =
1

(2π)n

∫
Rn

Eα(−tα|ξ|α)eiξ·θF f (ξ)dξ, for (θ, t) ∈ Sn−1 × [0,∞). (3.1)

First, we consider a relation between (WS f )lk and (F f )lk.

Lemma 1. For f ∈ C∞(Rn) with compact support, we have

(WS f )lk(t;α) =
il

(2π)
n
2

∞∫
0

Eα(−tαλαξ )(F f )lk(λξ)λ
n
2
ξ Jl+ n−2

2
(λξ)dλξ, (3.2)

where Jν(·) is the Bessel function of the first kind of order ν.

Proof. Changing the variables ξ → λξωξ in (3.1), we write the measurement data as

WS f (θ, t;α) =
1

(2π)n

∫
Sn−1

∞∫
0

Eα(−tαλαξ )e
iλξωξ ·θF f (λξωξ)λn−1

ξ dλξdS (ωξ)

=
1

(2π)n

∞∑
l=0

N(n,l)∑
k=0

∫
Sn−1

∞∫
0

Eα(−tαλαξ )e
iλξωξ ·θ(F f )lk(λξ)Ylk(ωξ)λn−1

ξ dλξdS (ωξ)

=
il

(2π)
n
2

∞∑
l=0

N(n,l)∑
k=0

∞∫
0

Eα(−tαλαξ )(F f )lk(λξ)λ
n
2
ξ Jl+ n−2

2
(λξ)dλξYlk(θ),

where in the last line, we used the Funk-Hecke theorem [30, (3.19) in Chapter 7]:∫
Sn−1

eiλξωξ ·θYlk(ωξ)dS (ωξ) = (2π)
n
2 ilλ

2−n
2
ξ Jl+ n−2

2
(λξ)Ylk(θ). (3.3)

A comparison with (2.3) completes our proof. □

Now we present the main theorem:

Theorem 2. For f ∈ C∞(Rn) with compact support, we have

M(Flk)(s) = 2
n
2π

n−2
2 αi−lΓ(1 − s) sin

(
πs
α

)
M
[
(WS f )lk(·;α)

]
(s), 0 < Re(s) < α, (3.4)

where
Flk(ρ) = (F f )lk(ρ−1)Jl+ n−2

2
(ρ−1)ρ−

n+2
2 .

Proof. By changing the variables λξ → λ̃ξ
−1
, (3.2) can be represented as

(WS f )lk(t;α) =
il

(2π)
n
2

∞∫
0

Eα
(
−tαλ̃ξ

−α
)

(F f )lk

(
λ̃ξ
−1) Jl+ n−2

2

(
λ̃ξ
−1)
λ̃ξ
− n+4

2 dλ̃ξ

=
il

(2π)
n
2

Flk × E(t;α),

(3.5)
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where
E(ρ;α) = Eα(−ρα). (3.6)

To check that the Mellin transform of (WS f )lk(·;α) in (3.5) is well-defined, it suffices to check that the
Mellin transforms of Flk and E are well-defined, respectively. Let us consider the Mellin transform of
Flk. Notice that

Flk(ρ) = O(ρ∞) as ρ→ 0+ and Flk(ρ) = O(ρ−l−n) as ρ→ ∞,

because Jν(ρ̃) = O(ρ̃ν) as ρ̃ → 0+ [32]. Therefore,M (Flk) (s) is well-defined for Re(s) < l + n − ϵ for
any ϵ > 0. Next, we consider the Mellin transform of E. Taking the Mellin transform of E, we obtain
the following formula (see [33, Lemma 9.1] or [15, (2.18)] ): for 0 < Re(s) < α

M(Eα(−·))(s) =

∞∫
0

Eα(−ρ)ρs−1dρ =
Γ(s)Γ(1 − s)
Γ(1 − αs)

.

Hence, we have

M(E)(s;α) =

∞∫
0

E(ρ;α)ρs−1dρ =
Γ
(

s
α

)
Γ
(
1 − s

α

)
αΓ(1 − s)

=
π

αΓ(1 − s) sin(πs
α

)
, (3.7)

where in the third equality, we applied the Euler’s reflection formula Γ(p)Γ(1 − p) =
π

sin(πp)
. Thus,

the Mellin transform of (3.5) is well-defined for 0 < Re(s) < α. Taking the Mellin transforms on both
sides of (3.5), we have

M
[
(WS f )lk(·;α)

]
(s) =

il

(2π)
n
2
M(Flk)(s)M(E)(s;α) =

πil

(2π)
n
2α

M(Flk)(s)

Γ(1 − s) sin
(
πs
α

) ,
where in the second equality, we used (3.7). □

Now, taking the inverse Mellin transform of M
[
(WS f )lk(·;α)

]
(s), we can reconstruct Flk and

(F f )lk.

Corollary 3. For f ∈ C∞(Rn) with compact support, we reconstruct flk from (WS f )lk by recovering
the Flk :

(F f )lk(ρ) = 2
n
2π

n−2
2 αi−lM−1

[
Γ(1 − ·) sin

(
π·

α

)
M
[
(WS f )lk

]
(·;α)
]

(ρ−1)Jl+ n−2
2

(ρ)−1ρ−
n+2

2 .

Thus far, we have considered the measurement dataWS f . Note that our approach can be applied
to the direction dependent measurement data from the model in [29] as well.

Remark 4. For f ∈ C∞(Rn) with compact support, let

g(θ, t;α) = c1WS f (θ, t;α) + c2
[
θ · ∇xWS f (x, t;α)

]
x=θ , (θ, t) ∈ Sn−1 × [0,∞)
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be the direction dependent measurement data modeled as described in [29, (1.2)], where θ · ∇xWS f
is the normal derivative ofWS f and c1 and c2 ∈ R are constants. Using (2.3), (3.3), and the Bessel
function identity d

dλ [λ−νJν(λ)] = −λ−νJν+1(λ) (see, [32, (5.13) on pp. 133]), we obtain glk:

glk(t;α) =
il

(2π)
n
2

∞∫
0

Eα(−tαλα)(F f )lk(λ)λ
n
2
[
(c1 + c2l)Jl+ n−2

2
(λ) − c2λJl+ n

2
(λ)
]

dλ

=
il

(2π)
n
2

Flk × E(t;α),

(3.8)

where we used (3.6) and

Flk(ρ) = (F f )lk(ρ−1)ρ−
n+2

2
[
(c1 + c2l)Jl+ n−2

2
(ρ−1) − c2(ρ−1)Jl+ n

2
(ρ−1)
]
.

By taking the Mellin transform on both sides of (3.8), and because M(glk) is well-defined for 0 <
Re(s) < α, we haveM(Flk) :

M(Flk)(s) = 2
n
2π

n
2−1αi−lΓ(1 − s) sin

(
πs
α

)
M(glk)(s).

Moreover, using the inverse Mellin transform of M(Flk), we can recover Flk, F flk, and f from the
Mellin transformM(Flk).

3.2. Hyperplanar geometry

Similar to the previous subsection, Section 3.1, we show that f can be determined fromWH f . From
(1.2), the measurement dataWH f are given as follows:

WH f (u, t;α) =
1

(2π)n

∫
Rn−1

∫
R

Eα(−tα
∣∣∣(ξ∗, ξn)

∣∣∣α)eiu·ξ∗F f (ξ∗, ξn)dξndξ∗, (3.9)

for (u, t) ∈ Rn−1 × [0,∞). If f is odd in xn, thenWH f (u, t;α) = 0. Thus we assume that f is even in
xn. First, we analyze the analog of the Fourier slice theorem:

Lemma 5. For f ∈ C∞(Rn) with compact support and that is even in xn, we have

Fu(WH f )(η∗, t;α) =
1
π

∞∫
0

Eα(−tαλα)F f (η∗,
√
λ2 −
∣∣∣η∗∣∣∣2)

λχ|η∗|≤λ(λ)√
λ2 −
∣∣∣η∗∣∣∣2 dλ. (3.10)

The Lemma for α = 2 has already been studied in [18, 23, 25].

Proof. Taking the n − 1-dimensional Fourier transform ofWH f defined in (3.9) with respect to u, we
have

Fu(WH f )(η∗, t;α) =
1

2π

∫
R

Eα(−tα
∣∣∣(η∗, ξn)

∣∣∣α)F f (η∗, ξn)dξn

=
1
π

∞∫
0

Eα(−tα
∣∣∣(η∗, ξn)

∣∣∣α)F f (η∗, ξn)dξn

=
1
π

∞∫
0

Eα(−tαλα)F f (η∗,
√
λ2 −
∣∣∣η∗∣∣∣2)

λχ|η∗|≤λ(λ)√
λ2 −
∣∣∣η∗∣∣∣2 dλ
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where in the second line, we used the evenness of F f and Eα with respect to the last variable ξn, and
in the last line, we changed the variables

∣∣∣(η∗, ξn)
∣∣∣→ λ. □

Now we present the main theorem:

Theorem 6. For f ∈ C∞(Rn) with compact support and that is even in xn, we have

M(Fη∗)(s) = αΓ(1 − s) sin
(
πs
α

)
M
[
Fu(WH f )

]
(η∗, s;α), 0 < Re(s) < α

where

Fη∗(λ) = F f (η∗,
√
λ−2 −

∣∣∣η∗∣∣∣2)
χ|η∗|≤λ−1(λ−1)

λ2
√
λ−2 −

∣∣∣η∗∣∣∣2 .
Proof. By changing the variables λ→ λ̃−1, (3.10) can be represented as

Fu(WH f )(η∗, t;α) =
1
π

∞∫
0

Eα
(
−tαλ̃−α

)
F f (η∗,

√
λ̃−2 −

∣∣∣η∗∣∣∣2)
χ|η∗|≤λ̃−1(λ̃−1)

λ̃3
√
λ̃−2 −

∣∣∣η∗∣∣∣2 dλ̃

=
1
π

Fη∗ × E(t;α),

where in the second line, we used the convolution (2.2) and (3.6). To demonstrate that the Mellin
transform of Fu(WH f ) defined is well-defined, we only need to check that the Mellin transforms of
Fη∗ are well-defined because, by Theorem 2M(E) is well-defined for 0 < Re(s) < α. Notice that

Fη∗(λ) = O(λ∞) as λ→ 0+ and Fη∗(λ) = O(λ−∞) as λ→ ∞,

Therefore,M
(
Fη∗
)

(s) is well-defined for any s ∈ C and the Mellin transform of Fu(WH f )(s) is well-
defined for 0 < Re(s) < 2. Taking the Mellin transform, we have

M
[
Fu(WH f )

]
(η∗, s;α) =

1
π
M(Fη∗)(s)M(E)(s;α) =

M(Fη∗)(s)

αΓ(1 − s) sin
(
πs
α

) ,
where in the second equality, we used (3.7). □

Again, taking the inverse Mellin transform ofM(Fη∗)(s), we reconstruct Flk and (F f )lk.

Corollary 7. For f ∈ C∞(Rn) with compact support and that is even in xn, we reconstruct F f from
WH f by recovering the Fη∗; accordingly, for η = (η∗, ηn) ∈ Rn−1 × R,

F f (η) =
ηn

|η|2
M−1

[
αΓ(1 − ·) sin

(
π·

α

)
M
[
Fu(WH f )

]
(η∗, ·;α)

]
(|η|−1).
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4. Conclusions

Recovering the initial function f from the solutions of the wave equation on some surface surround-
ing the object is crucial for the recently developed PAT methodology. In this study, we first investigated
one mathematical problem of PAT by using the fractional wave equation in order to provide a way for
to reconstruct f from fractional wave equation solutions restricted to the sphere and hyperplane.

We summarize both cases as follows:
For the spherical case, we can recover f fromWS f through the following steps:

1) Find (WS f )lk using the spherical harmonics (see Lemma 1).
2) Take the Mellin transform of (WS f )lk.

3) From Theorem 2, we obtainM(Flk) fromM
[
(WS f )lk

]
.

4) Taking the inverse Mellin transform, we recover Flk from the Mellin transformM(Flk) (see Corol-
lary 3).

5) Next, we find (F f )lk from Flk and finally get f .

For the hyperplane case, we can recover f fromWH f through the following steps:

1) Take the n − 1-dimensional Fourier transform ofWH f to get Fu(WH f ) (see Lemma 5).
2) Take the Mellin transform of Fu(WH f ).
3) Using Theorem 6, we findM(Fη∗) fromM

[
Fu(WH f )

]
.

4) Taking the inverse Mellin transform, we recover Fη∗ from the Mellin transform M(Fη∗) (see
Corollary 7).

5) Next, we find F f from Fη∗ and finally get f .
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14. K. Górska, A. Lattanzi, G Dattoli, Mittag-Leffler function and fractional differential equations,
Fract. Calc. Appl. Anal., 21 (2018), 220–236. https://doi.org/10.1515/fca-2018-0014

15. Y. Luchko, V. Kiryakova. The mellin integral transform in fractional calculus, Fract. Calc. Appl.
Anal., 16 (2013), 405–430. https://doi.org/10.2478/s13540-013-0025-8

16. Y. Luchko, Operational calculus for the general fractional derivative and its applications, Fract.
Calc. Appl. Anal., 24 (2021), 338–375. https://doi.org/10.1515/fca-2021-0016

17. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, Elsevier, 2006.

18. M. A. Anastasio, J. Zhang, D. Modgil, P. J. La Rivière, Application of inverse source con-
cepts to photoacoustic tomography, Inverse Probl., 23 (2007), S21. https://doi.org/10.1088/0266-
5611/23/6/S03

19. A. L. Bukhgeim, V. B. Kardakov, Solution of the inverse problem for the equation of
elastic waves by the method of spherical means, Siberian Math. J., 19 (1978), 528–535.
https://doi.org/10.1007/BF00967723

Electronic Research Archive Volume 30, Issue 12, 4436–4446.

http://dx.doi.org/https://doi.org/10.1121/1.4788648
http://dx.doi.org/https://doi.org/10.2475/ajs.s3-20.118.305
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2017.03.020
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2017.03.050
http://dx.doi.org/https://doi.org/10.3390/math5040076
http://dx.doi.org/https://doi.org/10.1016/j.bulsci.2021.103071
http://dx.doi.org/https://doi.org/10.1016/j.bulsci.2011.12.004
http://dx.doi.org/https://doi.org/10.1063/1.166272
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1515/fca-2018-0014
http://dx.doi.org/https://doi.org/10.2478/s13540-013-0025-8
http://dx.doi.org/https://doi.org/10.1515/fca-2021-0016
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1088/0266-5611/23/6/S03
http://dx.doi.org/https://doi.org/10.1088/0266-5611/23/6/S03
http://dx.doi.org/https://doi.org/10.1007/BF00967723


4446

20. N. Do, L. Kunyansky, Theoretically exact photoacoustic reconstruction from spatially and tempo-
rally reduced data, Inverse Probl., 34 (2018), 094004. https://doi.org/10.1088/1361-6420/aacfac

21. F. Dreier, M. Haltmeier, Explicit inversion formulas for the two-dimensional wave equation from
neumann traces, SIAM J. Imaging Sci., 13 (2020), 589-608. https://doi.org/10.1137/19M1260517

22. D. Finch, M. Haltmeier, Rakesh, Inversion of spherical means and the wave equation in even
dimensions, SIAM J. Appl. Math., 68 (2007), 392–412. https://doi.org/10.1137/070682137
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