Research article Special Issues

Regularity criteria for a two dimensional Erying-Powell fluid flowing in a MHD porous medium


  • Received: 28 July 2022 Revised: 23 August 2022 Accepted: 25 August 2022 Published: 05 September 2022
  • The intention and novelty in the presented study were to develop the regularity analysis for a parabolic equation describing a type of Eyring-Powell fluid flow in two dimensions. We proved that, under certain general conditions involving the space of bounded mean oscillation ($ BMO $) and the Lebesgue space $ L^2 $, there exist bounded and regular velocity solutions under the $ L^{2} $ space scope. This conclusion was additionally supplemented by the condition of a finite square integrable initial data (also some of the obtained expressions involved the gradient and the laplacian of the initial velocity distribution). To make our results further general, the proposed analysis was extended to cover regularity results in $ L^{p}\left(p > 2\right) $ spaces. As a remarkable conclusion, we highlight that the solutions to the two dimensional Eyring-Powell fluid flow did not exhibit blow up behaviour.

    Citation: José Luis Díaz Palencia, Saeed Ur Rahman, Saman Hanif. Regularity criteria for a two dimensional Erying-Powell fluid flowing in a MHD porous medium[J]. Electronic Research Archive, 2022, 30(11): 3949-3976. doi: 10.3934/era.2022201

    Related Papers:

  • The intention and novelty in the presented study were to develop the regularity analysis for a parabolic equation describing a type of Eyring-Powell fluid flow in two dimensions. We proved that, under certain general conditions involving the space of bounded mean oscillation ($ BMO $) and the Lebesgue space $ L^2 $, there exist bounded and regular velocity solutions under the $ L^{2} $ space scope. This conclusion was additionally supplemented by the condition of a finite square integrable initial data (also some of the obtained expressions involved the gradient and the laplacian of the initial velocity distribution). To make our results further general, the proposed analysis was extended to cover regularity results in $ L^{p}\left(p > 2\right) $ spaces. As a remarkable conclusion, we highlight that the solutions to the two dimensional Eyring-Powell fluid flow did not exhibit blow up behaviour.



    加载中


    [1] R. E. Powell, H. Eyring, Mechanisms for the relaxation theory of viscosity, Nature, 154 (1944), 427–428. https://doi.org/10.1038/154427a0 doi: 10.1038/154427a0
    [2] A. Ara, N. A. Khan, H. Khan, F. Sultan, Radiation effect on boundary layer flow of an Eyring–Powell fluid over an exponentially shrinking sheet, Ain Shams Eng. J., 5 (2014), 1337–1342. https://doi.org/10.1016/j.asej.2014.06.002 doi: 10.1016/j.asej.2014.06.002
    [3] T. Hayat, Z. Iqbal, M. Qasim, S. Obaidat, Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions, Int. J. Heat Mass Transfer, 55 (2012), 1817–1822. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.046 doi: 10.1016/j.ijheatmasstransfer.2011.10.046
    [4] A. Riaz, R. Ellahi, M. M. Bhatti, Study of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular compliant channel, Heat Transfer Res., 50 (2019), 1539–1560. https://doi.org/10.1615/HeatTransRes.2019025622 doi: 10.1615/HeatTransRes.2019025622
    [5] M. Y. Malik, A. Hussain, S. Nadeem, Boundary layer flow of an Eyring–Powell model fluid due to a stretching cylinder with variable viscosity, Sci. Iran., 20 (2013), 313–321. https://doi.org/10.1016/j.scient.2013.02.028 doi: 10.1016/j.scient.2013.02.028
    [6] B. Mallick, J. C. Misra, Peristaltic flow of Eyring-Powell nanofluid under the action of an electromagnetic field, Eng. Sci. Technol. Int. J., 22 (2019), 266–281. https://doi.org/10.1016/j.jestch.2018.12.001 doi: 10.1016/j.jestch.2018.12.001
    [7] M. Ramzan, M. Bilal, S. Kanwal, J. D. Chung, Effects of variable thermal conductivity and non-linear thermal radiation past an Eyring Powell nanofluid flow with chemical Reaction, Commun. Theor. Phys., 67 (2017), 723. https://doi.org/10.1088/0253-6102/67/6/723 doi: 10.1088/0253-6102/67/6/723
    [8] J. Rahimi, D. D. Ganji, M. Khaki, Kh. Hosseinzadeh, Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linear stretching sheet by collocation method, Alexandria Eng. J., 56 (2017), 621–627. https://doi.org/10.1016/j.aej.2016.11.006 doi: 10.1016/j.aej.2016.11.006
    [9] N. S. Akbar, A. Ebaid, Z. H. Khan, Numerical analysis of magnetic field on Eyring-Powell fluid flow towards a stretching sheet, J. Magn. Magn. Mater., 382 (2015), 355–358. https://doi.org/10.1016/j.jmmm.2015.01.088 doi: 10.1016/j.jmmm.2015.01.088
    [10] T. Javed, Z. Abbas, N. Ali, M. Sajid, Flow of an Eyring–Powell nonnewtonian fluid over a stretching sheet, Chem. Eng. Commun., 200 (2013), 327–336. https://doi.org/10.1080/00986445.2012.703151 doi: 10.1080/00986445.2012.703151
    [11] Y. Zhou, L. Zhen, Logarithmically improved criteria for Navier-Stokes equations, 2008. Available from: https://arXiv.org/pdf/0805.2784.pdf.
    [12] C. H. Chan, A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations, 14 (2007), 197–212. https://dx.doi.org/10.4310/MAA.2007.v14.n2.a5
    [13] Da Veiga, H. Beirao, A new regularity class for the Navier-Stokes equations in $R^n$, Chin. Ann. Math., 16 (1995), 407–412.
    [14] C. Cao, E. S. Titi, Regularity criteria for the three-dimensional Navier–Stokes equations, Indiana Univ. Math. J., 57 (2008), 2643–2662. https://doi.org/10.1512/iumj.2008.57.3719 doi: 10.1512/iumj.2008.57.3719
    [15] Y. Zhou, On regularity criteria in terms of pressure for the Navier-Stokes equations in $R^3$, Proc. Amer. Math. Soc., 134 (2006), 149–156. https://doi.org/10.1090/S0002-9939-05-08312-7 doi: 10.1090/S0002-9939-05-08312-7
    [16] L. C. Berselli, G. P. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 130 (2002), 3585–3595. https://doi.org/10.1090/S0002-9939-02-06697-2 doi: 10.1090/S0002-9939-02-06697-2
    [17] D. U. Chand, M. C. Alberto, S. Y. Jin, Perfect fluid spacetimes and gradient solitons, Filomat, 36 (2022), 829–842. https://doi.org/10.2298/FIL2203829D doi: 10.2298/FIL2203829D
    [18] M. A. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385–397. https://doi.org/10.1215/S0012-7094-02-11327-1 doi: 10.1215/S0012-7094-02-11327-1
    [19] S. J. Wang, M. Q. Tian, R. J. Su, A Blow-Up criterion for 3D nonhomogeneous incompressible magnetohydrodynamic equations with vacuum, J. Funct. Spaces, 2022 (2022), 7474964. https://doi.org/10.1155/2022/7474964 doi: 10.1155/2022/7474964
    [20] B. Manvi, J. Tawade, M. Biradar, S. Noeiaghdam, U. Fernandez-Gamiz, V. Govindan, The effects of MHD radiating and non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching, Results Eng., 14 (2022), 100435. https://doi.org/10.1016/j.rineng.2022.100435 doi: 10.1016/j.rineng.2022.100435
    [21] S. Arulmozhi, K. Sukkiramathi, S. S. Santra, R. Edwan, U. Fernandez-Gamiz, S. Noeiaghdam, Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate, Results Eng., 14 (2022), 100394. https://doi.org/10.1016/j.rineng.2022.100394 doi: 10.1016/j.rineng.2022.100394
    [22] A. Saeed, R. A. Shah, M. S. Khan, U. Fernandez-Gamiz, M. Z. Bani-Fwaz, S. Noeiaghdam, et al., Theoretical analysis of unsteady squeezing nanofluid flow with physical properties, Math. Biosci. Eng., 19 (2022), 10176–10191. https://doi.org/10.3934/mbe.2022477 doi: 10.3934/mbe.2022477
    [23] P. Thiyagarajan, S. Sathiamoorthy, H. Balasundaram, O. D. Makinde, U. Fernandez-Gamiz, S. Noeiaghdam, et al., Mass transfer effects on mucus fluid in the presence of chemical reaction, Alexandria Eng. J., 62 (2023), 193–210. https://doi.org/10.1016/j.aej.2022.06.030 doi: 10.1016/j.aej.2022.06.030
    [24] J. V. Tawade, C. N. Guled, S. Noeiaghdam, U. Fernandez-Gamiz, V. Govindan, S. Balamuralitharan, Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet, Results Eng., 15 (2022), 100448. https://doi.org/10.1016/j.rineng.2022.100448 doi: 10.1016/j.rineng.2022.100448
    [25] T. Hayat, M. Awais, S. Asghar, Radiative effects in a three dimensional flow of MHD Eyring-Powell fluid, J. Egypt. Math. Soc., 21 (2013), 379–384. https://doi.org/10.1016/j.joems.2013.02.009 doi: 10.1016/j.joems.2013.02.009
    [26] V. A. Solonnikov, Estimates for solutions of nonstationary Navier–Stokes equations, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, 38 (1973) 153–231. Available from: https://zbmath.org/?q=an:0346.35083.
    [27] J. Azzam, J. Bedrossian, Bounded mean oscillation and the uniqueness of active scalar equations, Trans. Amer. Math. Soc., 367 (2015), 3095–3118. https://doi.org/10.1090/S0002-9947-2014-06040-6 doi: 10.1090/S0002-9947-2014-06040-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1312) PDF downloads(100) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog