Research article

Some conditions for the existence and uniqueness of monotonic and positive solutions for nonlinear systems of ordinary differential equations

  • Received: 12 January 2022 Revised: 30 March 2022 Accepted: 01 April 2022 Published: 12 April 2022
  • In this paper, applying the theory of fixed points in complete gauge spaces, we establish some conditions for the existence and uniqueness of monotonic and positive solutions for nonlinear systems of ordinary differential equations. Moreover, the paper contains an application of the theoretical results to the study of a class of systems of nonlinear ordinary differential equations.

    Citation: Adrian Nicolae Branga. Some conditions for the existence and uniqueness of monotonic and positive solutions for nonlinear systems of ordinary differential equations[J]. Electronic Research Archive, 2022, 30(6): 1999-2017. doi: 10.3934/era.2022101

    Related Papers:

  • In this paper, applying the theory of fixed points in complete gauge spaces, we establish some conditions for the existence and uniqueness of monotonic and positive solutions for nonlinear systems of ordinary differential equations. Moreover, the paper contains an application of the theoretical results to the study of a class of systems of nonlinear ordinary differential equations.



    加载中


    [1] J. Chu, Monotone solutions of a nonlinear differential equation for geophysical fluid flows, Nonlinear Anal., 166 (2018), 144–153. https://doi.org/10.1016/j.na.2017.10.010 doi: 10.1016/j.na.2017.10.010
    [2] A. Aslanov, On the existence of monotone positive solutions of second order differential equations, Monatsh. Math., 184 (2017), 505–517. https://doi.org/10.1007/s00605-016-1015-9 doi: 10.1007/s00605-016-1015-9
    [3] T. Ertem, A. Zafer, Monotone positive solutions for a class of second-order nonlinear differential equations, J. Comput. Appl. Math., 259 (2014), 672–681. https://doi.org/10.1016/j.cam.2013.04.020 doi: 10.1016/j.cam.2013.04.020
    [4] Z. Yin, Monotone positive solutions of second-order nonlinear differential equations, Nonlinear Anal., 54 (2003), 391–403. https://doi.org/10.1016/S0362-546X(03)00089-0 doi: 10.1016/S0362-546X(03)00089-0
    [5] W. T. Li, X. L. Fan, Monotone solutions of second-order nonlinear differential equations, Appl. Math. Lett., 13 (2000), 65–70. https://doi.org/10.1016/S0893-9659(99)00210-4 doi: 10.1016/S0893-9659(99)00210-4
    [6] J. Rovder, On monotone solution of the third-order differential equation, J. Comput. Appl. Math., 66 (1996), 421–432. https://doi.org/10.1016/0377-0427(95)00165-4 doi: 10.1016/0377-0427(95)00165-4
    [7] M. Tóthová, O. Palumbíny, On monotone solutions of the fourth order ordinary differential equations, Czechoslovak Math. J., 45 (1995), 737–746. https://doi.org/10.21136/CMJ.1995.128553 doi: 10.21136/CMJ.1995.128553
    [8] E. Rovderová, Existence of a monotone solution of a nonlinear differential equation, J. Math. Anal. Appl., 192 (1995), 1–15. https://doi.org/10.1006/jmaa.1995.1156 doi: 10.1006/jmaa.1995.1156
    [9] K. Iséki, A remark on monotone solutions of differential equations, Proc. Japan Acad., 35 (1959), 370–371. https://doi.org/10.3792/pja/1195524292 doi: 10.3792/pja/1195524292
    [10] B. P. Demidovich, On boundedness of monotonic solutions of a system of linear differential equations, Uspekhi Mat. Nauk, 12 (1957), 143–146.
    [11] S. Sanhan, W. Sanhan, C. Mongkolkeha, New existence of fixed point results in generalized pseudodistance functions with its application to differential equations, Mathematics, 6 (2018), 1–14. https://doi.org/10.3390/math6120324 doi: 10.3390/math6120324
    [12] A. N. Branga, I. M. Olaru, An application of the fixed point theory to the study of monotonic solutions for systems of differential equations, Mathematics, 8 (2020), 1–8. https://doi.org/10.3390/math8071183 doi: 10.3390/math8071183
    [13] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
    [14] I. Colojoarǎ, Sur un théoréme d'un point fixe dans les espaces uniformes complets, Com. Acad. R. P. Roumaine, 11 (1967), 281–283.
    [15] N. Gheorghiu, Contraction theorem in uniform spaces, Stud. Cercet. Mat., 19 (1967), 119–122.
    [16] R. J. Knill, Fixed points of uniform contractions, J. Math. Anal. Appl., 12 (1965), 449–455. https://doi.org/10.1016/0022-247X(65)90012-0 doi: 10.1016/0022-247X(65)90012-0
    [17] E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Am. Math. Soc., 191 (1974), 209–225. https://doi.org/10.1090/S0002-9947-1974-0362283-5 doi: 10.1090/S0002-9947-1974-0362283-5
    [18] U. Chatterjee, Advanced Mathematical Analysis: Theory and Problems, Academic Publishers, Calcutta, 2011.
    [19] E. S. Şuhubi, Functional Analysis, Kluwer Academic Publishers, Dordrecht, 2003.
    [20] G. J. de Cabral-García, K. Baquero-Mariaca, J. Villa-Morales, A fixed point theorem in the space of integrable functions and applications, Rend. Circ. Mat. Palermo Ser. 2, (2022), 1–18. https://doi.org/10.1007/s12215-021-00714-7 doi: 10.1007/s12215-021-00714-7
    [21] F. A. Akgun, Z. Rasulov, A new iteration method for the solution of third-order BVP via Green's function, Demonstr. Math., 54 (2021), 425–435. https://doi.org/10.1515/dema-2021-0031 doi: 10.1515/dema-2021-0031
    [22] P. Debnath, N. Konwar, S. Radenović (eds.), Metric fixed point theory: applications in science, engineering and behavioural sciences, Forum for Interdisciplinary Mathematics, Springer Nature, Singapore, 2021. https://doi.org/10.1007/978-981-16-4896-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1389) PDF downloads(99) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog