Research article Special Issues

Simultaneous recovery of an obstacle and its excitation sources from near-field scattering data

  • Received: 19 December 2021 Revised: 17 February 2022 Accepted: 07 March 2022 Published: 17 March 2022
  • This paper is concerned with the inverse problem of determining an obstacle and the corresponding incident point sources in the Helmholtz equation from near-field scattering data. An optimization method is proposed to simultaneously recover both the obstacle and source locations. Moreover, a two-step sampling scheme with novel indicator functions is proposed to produce a good initial guess for solving the optimization problem. Theoretically, we analyze the convergence properties of the optimization method and the behaviors of the indicator functions. Several numerical examples are presented to show the effectiveness of the proposed method.

    Citation: Yan Chang, Yukun Guo. Simultaneous recovery of an obstacle and its excitation sources from near-field scattering data[J]. Electronic Research Archive, 2022, 30(4): 1296-1321. doi: 10.3934/era.2022068

    Related Papers:

  • This paper is concerned with the inverse problem of determining an obstacle and the corresponding incident point sources in the Helmholtz equation from near-field scattering data. An optimization method is proposed to simultaneously recover both the obstacle and source locations. Moreover, a two-step sampling scheme with novel indicator functions is proposed to produce a good initial guess for solving the optimization problem. Theoretically, we analyze the convergence properties of the optimization method and the behaviors of the indicator functions. Several numerical examples are presented to show the effectiveness of the proposed method.



    加载中


    [1] H. Ammari, G. Bao, J. Fleming, An inverse source problem for Maxwell's equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369–1382. https://doi.org/10.1137/S0036139900373927 doi: 10.1137/S0036139900373927
    [2] S. Arridge, Optical tomography in medical imaging, Inverse Probl., 15 (1999), R41–R93, https://doi.org/10.1088/0266-5611/21/6/002 doi: 10.1088/0266-5611/21/6/002
    [3] C. Baum, Detection and Identification of Visually Obscured Targets, ${{1}^{\rm{st}}}$ edition, Routledge, Boca Raton, 2019. https://doi.org/10.1201/9781315141084
    [4] P. Lim, J. Ozard, On the underwater acoustic field of a moving point source. I. Range-independent environment, J. Acoust. Soc. Am., 95 (1994), 131–137. https://doi.org/10.1121/1.408370 doi: 10.1121/1.408370
    [5] A. Devaney, E. Marengo, M. Li, Inverse source problem in nonhomogeneous background media, SIAM J. Appl. Math., 67 (2007), 1353–1378. https://doi.org/10.1137/060658618 doi: 10.1137/060658618
    [6] A. Ramm, Multidimensional Inverse Scattering Problems, Longman/Wiley, New York, 1992. https://doi.org/10.1109/DIPED.1999.822120
    [7] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, $4^{\textth}$ edition, Springer-Nature, Switzerland, 2019. https://doi.org/10.1007/978-3-030-30351-8
    [8] Y. Guo, F. Ma, D. Zhang, An optimization method for acoustic inverse obstacle scattering problems with multiple incident waves, Inverse Probl. Sci. Eng., 19 (2011), 461–484. https://doi.org/10.1080/17415977.2010.518286 doi: 10.1080/17415977.2010.518286
    [9] A. Kirsch, R. Kress, A numerical method for an inverse scattering problem, J. Inverse Ill-Posed Probl., 3 (1987), 279–289. https://doi.org/10.1016/B978-0-12-239040-1.50022-3 doi: 10.1016/B978-0-12-239040-1.50022-3
    [10] R. Potthast, Stability estimates and reconstruction in inverse scattering using singular sources, J. Comput. Appl. Math., 114 (2000), 247–274. https://doi.org/10.1016/s0377-0427(99)00201-0 doi: 10.1016/s0377-0427(99)00201-0
    [11] G. Bao, P. Li, J. Lin, F. Triki Inverse scattering problems with multi-frequencies, Inverse Probl., 31 (2015), 093001. https://doi.org/10.1088/0266-5611/31/9/093001 doi: 10.1088/0266-5611/31/9/093001
    [12] A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Probl., 14 (1998), 1489–1512. https://doi.org/10.1088/0266-5611/14/6/009 doi: 10.1088/0266-5611/14/6/009
    [13] J. Li, H. Liu, J. Zou, Multilevel linear sampling method for inverse scattering problems, SIAM J. Sci. Comput., 30 (2008), 1228–1250. https://doi.org/10.1137/060674247 doi: 10.1137/060674247
    [14] X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency, Inverse Probl., 33 (2017), 085011. https://doi.org/10.1088/1361-6420/aa777d doi: 10.1088/1361-6420/aa777d
    [15] J. Li, P. Li, H. Liu, X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Probl., 31 (2015), 105006. https://doi.org/10.1088/0266-5611/31/10/105006 doi: 10.1088/0266-5611/31/10/105006
    [16] J. Li, H. Liu, J. Zou, Locating multiple multiscale acoustic scatterers, Multiscale Model. Simul., 12 (2014), 927–952. https://doi.org/10.1137/13093490x doi: 10.1137/13093490x
    [17] Z. Chen, G. Huang, Phaseless imaging by reverse time migration: acoustic waves, Numer. Math. Theory Methods Appl., 10 (2017), 1–21. https://doi.org/10.4208/nmtma.2017.m1617 doi: 10.4208/nmtma.2017.m1617
    [18] J. Chen, Z. Chen, G. Huang, Reverse time migration for extended obstacles: acoustic waves, Inverse Probl., 29 (2013), 085005. https://doi.org/10.1088/0266-5611/29/8/085005 doi: 10.1088/0266-5611/29/8/085005
    [19] G. Bao, S. Lu, W. Rundell, B. Xu, A recursive algorithm for multi-frequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608–1628. https://doi.org/10.1137/140993648 doi: 10.1137/140993648
    [20] D. Zhang, Y. Guo, J, Li, H. Liu, Locating multiple multipolar acoustic sources using the direct sampling method, Commun. Comput. Phys., 25 (2019), 1328–1356. https://doi.org/10.4208/cicp.OA-2018-0020 doi: 10.4208/cicp.OA-2018-0020
    [21] S. Bousba, Y. Guo, X. Wang, L. Li, Identifying multipolar acoustic sources by the direct sampling method, Appl. Anal., 99 (2018), 856–879. https://doi.org/10.1080/00036811.2018.1514019 doi: 10.1080/00036811.2018.1514019
    [22] A. Badia, T. Nara, An inverse source problem for Helmholtz's equation from the Cauchy data with a single wave number, Inverse Probl., 27 (2011), 105001. https://doi.org/10.1088/02665611/27/10/105001 doi: 10.1088/02665611/27/10/105001
    [23] H. Liu, G. Uhlmann, Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Probl., 31 (2015), 105005. https://doi.org/10.1088/0266-5611/31/10/105005 doi: 10.1088/0266-5611/31/10/105005
    [24] H. Liu, X. Liu, Recovery of an embedded obstacle and its surrounding medium by formally-determined scattering data, Inverse Probl., 33 (2017), 065001. https://doi.org/10.1088/13616420/aa6770 doi: 10.1088/13616420/aa6770
    [25] G. Hu, Y. Kian, Y. Zhao, Uniqueness to some inverse source problems for the wave equation in unbounded domains, Acta Math. Appl. Sin., 36 (2020), 134–150. https://doi.org/10.1007/s10255-020-0917-4 doi: 10.1007/s10255-020-0917-4
    [26] S. Luo, J. Qian, P. Stefanov, Adjoint state method for the identification problem in SPECT: recovery of both the source and the attenuation in the attenuated X-ray transform, SIAM J. Imaging Sci., 7 (2014), 696–715. https://doi.org/10.1137/130939559 doi: 10.1137/130939559
    [27] J. Li, H. Liu, S. Ma, Determining a random Schrödinger equation with unknown source and potential, SIAM J. Math. Anal., 51 (2019), 3465–3491. https://doi.org/10.1137/18M1225276 doi: 10.1137/18M1225276
    [28] J. Li, H. Liu, S. Ma, Determining a random Schrödinger operator: both potential and source are random, Comm. Math. Phys., 381 (2021), 527–556. https://doi.org/10.1007/s00220-020-03889-9 doi: 10.1007/s00220-020-03889-9
    [29] G. Bao, Y. Liu, F. Triki, Recovering simultaneously a potential and a point source from Cauchy data, Minimax Theory Appl., 6 (2021), 227–238.
    [30] D. Colton, R. Kress, Looking back on inverse scattering theory, SIAM Rev., 60 (2018), 779–807. https://doi.org/10.1137/17m1144763 doi: 10.1137/17m1144763
    [31] Y. Deng, H. Liu, X. Liu, Recovery of an embedded obstacle and the surrounding medium for Maxwell's system, J. Differ. Equations, 267 (2019), 2192–2209. https://doi.org/10.1016/J.JDE.2019.03.009 doi: 10.1016/J.JDE.2019.03.009
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1861) PDF downloads(91) Cited by(5)

Article outline

Figures and Tables

Figures(9)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog