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Abstract: This paper is concerned with the inverse problem of determining an obstacle and the cor-
responding incident point sources in the Helmholtz equation from near-field scattering data. An opti-
mization method is proposed to simultaneously recover both the obstacle and source locations. More-
over, a two-step sampling scheme with novel indicator functions is proposed to produce a good initial
guess for solving the optimization problem. Theoretically, we analyze the convergence properties of
the optimization method and the behaviors of the indicator functions. Several numerical examples are
presented to show the effectiveness of the proposed method.
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1. Introduction

Inverse problems for wave equations arise widely in non-destructive testing [1,2], underwater acous-
tics [3, 4], antenna synthesis [5, 6] and other application areas. Being two prototypical models in the
field of inverse problems, the time-harmonic inverse obstacle scattering and inverse source problem
have received significant investigations in the literature. For the nonlinear inverse obstacle scattering
problem, the emanating source (incident wave) is given and the inhomogeneous scatterer serves as the
target. Reciprocally, in the linear inverse source problem, the source is unknown while the passive
scatterering inhomogeneity is vacant. Classical algorithms for inverse obstacle scattering problems
involve the optimization methods [7–9], the singular source method [10] and the recursive lineariza-
tion algorithm [11]. In addition, there are some sampling-type methods with qualitative features, for
instance, the factorization method [12], the linear and direct sampling methods [13,14], the single-shot
schemes [15,16] and the reverse time migration approach [17,18]. Recently, a variety of reconstruction
methods have also been developed to deal with the inverse source problems. Bao et al. [19] applied a
recursive algorithm to recover unknown sources of acoustic field with multi-frequency measurement
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data. Zhang et al. [20] used the direct sampling method to locate multipolar acoustic sources for the
Helmholtz equation from near-field Cauchy data. Bousba et al. [21] utilized the direct sampling method
to identify point sources for the Helmholtz equation from far-field data. The algebraic method has also
been applied to the Helmholtz equation for determining monopolar sources [22].

In this paper, we are concerned with an inverse problem to simultaneously reconstruct the acoustic
obstacle and its excitation source points from the near-field measurements. This co-inversion problem
can be mathematically formulated as an intrinsically coupled problem comprising the aforementioned
inverse obstacle scattering and inverse source problem. In comparison with the vast studies on the
conventional inverse obstacle/source problems, focuses on identification of both unknown source and
scatterer are relatively rare. Over recent years, some interesting attempts have been made in dealing
with such co-inversion problems. In [23], Liu et al. established sufficient conditions to recover both the
sound speed of the medium and the source in thermo- and photo-acoustic tomography. The simultane-
ous recovery of an embedded obstacle and its surrounding medium by formally-determined scattering
data was studied in [24]. In [25], the authors proved the uniqueness in simultaneously recovering the
source functions and the obstacle for the wave equation. An adjoint state method for recovering both
the source and attenuation in the attenuated X-ray transform was proposed in [26]. In addition, we
also refer to [27–29] for some recent studies on the determination of both potential and source in the
Schrödinger equations.

In contrast to the standard problem of reconstructing either the source or obstacle solely, it is sub-
stantially more challenging to identify these unknown targets concurrently. It is worthwhile noting
that only the total field is available and the contributions from inaccessible source and scatterer are
superimposed in the total field measurements in the scenario of co-reconstruction. Hence, decoupling
these incident and scattered components would inevitably suffer from inherent difficulties. As a re-
sult, the usual nonlinearity, ill-posedness as well as the additional lack of information constitute the
mathematical and numerical challenges of our current study.

In this work, we propose an optimization method to recover an obstacle and its illuminating point
sources simultaneously from the measured total field. The salient features of our method can be sum-
marized as follows. First, the proposed method is capable of simultaneously and quantitatively deter-
mining both the obstacle and source points since the reconstruction does not rely on any alternating
iteration between the source and scatterer. Second, by the idea of the decomposition method and
reformulating the inverse problem as a nonlinear optimization problem, the solution process for the
direct problem is unnecessary. Third, by designing proper indicator functions, we provide an easy-to-
implement and effective strategy for choosing the initial guesses for the optimization method, which
avoids the a prior information of the unknown targets. Finally, the proposed method is insensitive to
the noise-contaminated data and works well even with limited-aperture measurement data despite the
severe ill-posedness.

We now introduce the precise formulation of the co-inversion problem under consideration. Let
D ⊂ R2 be an open and simply connected domain with C2 boundary ∂D. Given the source point
located at z ∈ R2\D, the incident field ui due to z is given by

ui(x; z) = Φ(x, z) =
i
4

H(1)
0 (k|x − z|), x ∈ R2\

(
D ∪ {z}

)
, (1.1)

where k > 0 is the wave number, H(1)
0 is the Hankel function of the first kind of order zero. Then the

forward scattering problem for the sound-soft obstacle D is to find the scattered field us ∈ H1
loc(R

2\D)
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such that

∆us + k2us = 0 in R2\D, (1.2)
u = 0 on ∂D, (1.3)

lim
r:=|x|→∞

√
r
(
∂us

∂r
− ikus

)
= 0, (1.4)

where u = ui + us is the total field. The Sommerfeld radiation condition (1.4) holds uniformly with
respect to all directions x̂ = x/|x| ∈ S := {x ∈ R2 : |x| = 1}, and (1.1) is also known as the fundamental
solution to the Helmholtz equation (1.2). It is well known (see, e.g., [30]) that the direct problem
(1.2)–(1.4) admits a unique solution us ∈ H1

loc

(
R2\D

)
.

In this paper, we assume that D ⊂ BR := {x ∈ R2 : |x| < R} and BR\D is connected. Let S :=
∪N

j=1{z j} ⊂ BR\D be a set of distinct source points with N ∈ N+ the number of source points. Denote by
us(x; z j) the scattered field corresponding to the incident field ui(x; z j) of the form (1.1), and we collect
the total field u(x; z j) = ui(x; z j) + us(x; z j) on the measurement curve ΓR := ∂BR = {x ∈ R2 : |x| = R}.
Define the measured total field data by

U := {u(x; z) : x ∈ ΓR, z ∈ S },

then the inverse problem under consideration is to determine the obstacle-source pair (∂D, S ) from the
measurements U, namely,

U→ (∂D, S ). (1.5)

We refer to Figure 1 for an illustration of the geometry setting of the inverse obstacle and source
problem (1.5). In addition, it deserves noting that, both the single source case (N = 1) and the multiple
source case (N ≥ 2) are admissible scenarios. The proposed algorithms in the subsequent sections can
be applicable to both scenarios. We also want to point out that, the discrete total field measurement
U is a complex multistatic response matrix whose (i, j)-th entry is the total field data due to the j-th
source point and the i-th receiver. In other words, the total fields are collected separately for each
source point one by one in our model and thus not directly related to the incident wave produced by
the superposition of source points. Under the above configuration, the number N of the point sources
is known as a priori, which is exactly the number of columns of the measurement matrix U.

The rest of this paper is organized as follows: In Section 2, an optimization method is proposed
to reconstruct the source-obstacle pair and the corresponding convergence theory is established. In
Section 3, an effective strategy based on the sampling-type method is provided to select the initial guess
for the optimization method. Numerical experiments are given in Section 4 to verify the performance
of the method. Finally, some conclusions are given in Section 5.

2. Optimization methods

Based on the decomposition method for inverse obstacle scattering problem [9], we propose a novel
optimization method in this section by incorporating the source locations as new variables in the cost
functional in order to reconstruct the obstacle-source pair (∂D, S ). The basic idea of the optimization
method is to seek for the positions of source points and the boundary of obstacle as the locations
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ΓR

D

BR

Figure 1. Illustration of the co-inversion for imaging the obstacle and source points.

where the Dirichlet boundary condition holds, namely, the total field ui + us vanishes. We would like
to emphasize that, since the admissible source locations and obstacles are radically distinct, the new
optimization problem will thereby encounter nontrivial difficulties in the analysis and implementation.

2.1. Optimization method for the co-inversion problem

In this subsection, we present the optimization method for the inverse obstacle-source problem.
According to the initial guess by the sampling results (see the next section for more details) about the
obstacle-source pair (∂D, S ), we can place a closed C2 curve Λ inside D such that k2 is not a Dirichlet
eigenvalue for the negative Laplacian in the interior of Λ. Choosing some proper admissible set U × V
of the obstacle-source pair (Γ, z′) such that Γ ∈ U, z′ = (z′1, z

′
2, · · · , z

′
N) ∈ V, the scattered field us(x; z′j)

corresponding to z′j can be represented by a single-layer potential

us(x; z′j) =

∫
Λ

Φ(x, y)ϕ j(y)ds(y), (2.1)

with the unknown density ϕ j ∈ L2(Λ). Given the measured total field u(x; z j), the density ϕ j are sup-
posed to satisfy the integral equation of the first kind

(Sϕ j)(x) = u(x; z j) − ui(x; z′j), x ∈ ΓR, (2.2)

where ui(x; z′j) is the incident wave due to source point z′j and the compact integral operator S :
L2(Λ)→ L2(ΓR) is defined by

(Sϕ)(x) :=
∫

Λ

Φ(x, y)ϕ(y)ds(y), x ∈ ΓR.

The fact that the kernel of S is analytic leads to the severe ill-posedness of (2.2), which motivates us to
seek for a stable numerical solution by adopting the Tikhonov regularization strategy to replace (2.2)
by

αϕαj + S∗Sϕαj = S∗
(
u(·; z j) − ui(·; z′j)

)
, on ΓR, (2.3)
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where α > 0 is a regularization parameter and the adjoint operator S∗ : L2(ΓR) → L2(Λ) of S is given
by

(S∗g)(y) :=
∫

ΓR

Φ(x, y)g(x)ds(x), y ∈ Λ,

where the overline signifies the complex conjugate.
After obtaining the regularized density ϕαj by solving (2.3), we can calculate the approximation

us
α(x; z′j) for the scattered field us(x; z′j) by inserting the solution ϕαj of (2.3) into the single-layer poten-

tial representation (2.1). Then, the obstacle-source pair (∂D, z) can be sought for by minimizing the
defect

N∑
j=1

∥∥∥ui(x; z′j) + us
α(x; z′j)

∥∥∥
L2(Γ)

(2.4)

over some suitable class U × V of admissible obstacle-source pairs (Γ, z′). In (2.4), ui(x; z′j) is the
incident field due to the source point z′j.

Remark 2.1. We would like to point out that, as α tends to zero, the solution ϕαj of (2.3) converges only
if (2.2) is solvable. Following [7, Section 5.5] for the classic decomposition method, the solvability
of (2.2) is related to regularity properties of the scattered field which, in general, cannot be known in
advance for an unknown obstacle D. In other words, us

α(x; z′j) may not converge to the u(x; z j)−ui(x; z′j)
since (2.2) may not be solvable.

For the minimization problem, the admissible class U of Γ is chosen to be a compact set (with
respect to the C1,β norm, 0 < β < 1) of all star-like closed C2 curves, described by

Γ = {r(x̂)x̂ : x̂ ∈ S}, (2.5)

where r ∈ C2(S) is the radial function satisfying the prior information

0 < a ≤ r(x̂) ≤ b, x̂ ∈ S,

with given constants a and b. The admissible class V of z′ = (z′1, z
′
2, · · · , z

′
N) is chosen to be a compact

set (with respect to the Euclidean norm in R2) of all N ordered points such that z′j ∈ BR\DΓ, j =

1, · · · ,N, where DΓ is the domain enclosed by Γ such that Γ = ∂DΓ.

Remark 2.2. It deserves noting that, the purpose for choosing the admissible curve to be star-like is to
provide convenience for the subsequent analysis and calculation, while the exact boundary curve ∂D
does not necessarily require to be star-like. In fact, even if ∂D is not star-like, the obstacle-source pair
may also be well reconstructed, which will be illustrated by the numerical experiments in Section 4.

2.2. Convergence analysis

In this subsection, we will investigate the convergence properties of the optimization method with
an analogous analysis to that of the decomposition methods [7, 8].

For later use, we define the acoustic single-layer operator S1 : L2(Λ)→ L2(Γ) by

(S1ϕ)(x) :=
∫

Λ

Φ(x, y)ϕ(y)ds(y), x ∈ Γ, (2.6)
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where Γ is a closed C2 curve containing Λ in its interior. To start with, we state some properties of the
operators S and S1 (cf. [7]).

Lemma 2.1. The single-layer operators S and S1, defined by (2.1) and (2.6), respectively, are injective
and have dense range provided that k2 is not a Dirichlet eigenvalue for the negative Laplacian in the
interior of Λ.

Combining the minimization of the Tikhonov functional for (2.4) and the defect minimization (2.2),
we define the cost functional µ : (L2(Λ))N × U × V → R by

µ(ϕ,Γ, z′;α) =

N∑
j=1

{∥∥∥u(x; z j) − ui(x; z′j) − (Sϕ j)(x)
∥∥∥2

L2(ΓR)
+ α

∥∥∥ϕ j(x)
∥∥∥2

L2(Λ)
+

∥∥∥ui(x; z′j) + (S1ϕ j)(x)
∥∥∥2

L2(Γ)

}
,

(2.7)

where ϕ = (ϕ1, · · · , ϕN) ∈ (L2(Λ))N , z′ = (z′1, z
′
2, · · · , z

′
N) ∈ V, α > 0 is the regularization parameter in

(2.3).
Now, we turn to analyze the convergence properties of the optimization method. To this end, we

first introduce the following definition of optimal obstacle-source pair.

Definition 2.1. Given the measured total field u(x; z j), j = 1, · · · ,N and a regularization parameter
α > 0, an obstacle-source pair (Γ∗, z∗) ∈ U ×V is called optimal if there exists ϕ∗ ∈ (L2(Λ))N such that
ϕ∗ and (Γ∗, z∗) minimize the cost functional (2.7) simultaneously over all ϕ ∈ (L2(Λ))N and (Γ, z′) ∈
U × V, i.e.,

µ(ϕ∗,Γ∗, z∗;α) = m(α), (2.8)

where
m(α) = inf

ϕ∈(L2(Λ))N ,
Γ∈U, z′∈V

µ(ϕ,Γ, z′;α).

In terms of Definition 2.1, the following theorem establishes the existence of the optimal solution.

Theorem 2.1. For each α > 0, there exists an optimal obstacle-source pair (Γ∗, z∗) ∈ U × V.

Proof. Let (ϕn,Γn, zn) be a minimizing sequence in
(
L2(Λ)

)N
× U × V , i.e.,

lim
n→∞

µ(ϕn,Γn, zn;α) = m(α).

Since U,V are compact, we can assume that Γn → Γ∗, zn → z∗, n → ∞. In this paper, the convergence
Γn → Γ∗ is understood in the sense that ‖rn − r∗‖C1,β(S) → 0, n → ∞, with the functions rn and r∗

representing Γn and Γ∗ via (2.5), respectively. From

α‖ϕn‖(L2(Λ))N ≤ µ(ϕn,Γn, zn;α)→ m(α), n→ ∞,

with α > 0, we conclude that the sequence {ϕn} is bounded, i.e., there exists some constant C such that
‖ϕn‖(L2(Λ))N ≤ C,∀n. Further, we can assume that ϕn ⇀ ϕ∗ ∈ (L2(Λ))N , n → ∞. Since S is compact, it
follows that Sϕn

j → Sϕ
∗
j, n → ∞, j = 1, · · · ,N. The fact that the Hankel function H(1)

0 is continuous
leads to the following convergence

ui(x; zn
j) =

i
4

H(1)
0 (k|x − zn

j |)→
i
4

H(1)
0 (k|x − z∗j |) = ui(x; z∗j), j = 1, · · · ,N.
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Hence, ∥∥∥u(x; z j) − ui(x; zn
j) − (Sϕn

j)(x)
∥∥∥

L2(ΓR)
→

∥∥∥u(x; z j) − ui(x; z∗j) − (Sϕ∗j)(x)
∥∥∥

L2(ΓR)
, n→ ∞.

By Taylor’s formula, one can estimate that for all x̂ ∈ S,

|Φ(rn(x̂)x̂, y) − Φ(r∗(x̂)x̂, y)| ≤ K|rn(x̂) − r∗(x̂)|,

with
K = sup

U×Λ

|∇xΦ(x, y)| .

From the Schwarz inequality, it holds that∣∣∣∣∣∫
Λ

[
Φ(rn(x̂)x̂, y) − Φ(r∗(x̂)x̂, y)

]
ϕn

j(y)ds(y)
∣∣∣∣∣ ≤ CK|Λ||rn(x̂) − r∗(x̂)|,

for all x̂ ∈ S. Denote the dependence of S1 : L2(Λ) → L2(Γn) on n by writing Sn
1, and the uniform

convergence Sn
1ϕ

n
j → S1ϕ

∗
j(n→ ∞) holds. Therefore, we can deduce that∥∥∥ui(x; zn

j) + (Sn
1ϕ

n
j)(x)

∥∥∥2

L2(Γn)
→

∥∥∥ui(x; z∗j) + (S1ϕ
∗
j)(x)

∥∥∥2

L2(Γ∗)
, n→ ∞.

Further,

α

N∑
j=1

∥∥∥ϕn
j

∥∥∥2

L2(Λ)
→m(α) −

N∑
j=1

∥∥∥u(x; z j) − ui(x; z∗j) − (Sϕ∗j)(x)
∥∥∥2

L2(ΓR)

−

N∑
j=1

∥∥∥ui(x; z∗j) + (S1ϕ
∗
j)(x)

∥∥∥2

L2(Γ∗)
≤ α

N∑
j=1

∥∥∥ϕ∗j∥∥∥2

L2(Λ)
, n→ ∞.

Since ϕn
j ⇀ ϕ∗j, n→ ∞, j = 1, · · · ,N, it follows that

lim
n→∞

N∑
j=1

∥∥∥ϕn
j − ϕ

∗
j

∥∥∥2

L2(Λ)
= lim

n→∞

N∑
j=1

∥∥∥ϕn
j

∥∥∥2

L2(Λ)
−

N∑
j=1

∥∥∥ϕ∗j∥∥∥2

L2(Λ)
≤ 0.

Thus, we have the norm convergence
∥∥∥ϕn

j − ϕ
∗
j

∥∥∥→ 0, n→ ∞ for j = 1, · · · ,N. Finally, it holds that

µ
(
ϕ∗,Γ∗, z∗;α

)
= lim

n→∞
µ
(
ϕn,Γn, zn;α

)
= m(α),

and the proof is complete.

Before heading for the convergence analysis of the optimization method, we shall state the conver-
gence property of the cost functional first.

Theorem 2.2. Let z j, j = 1, · · · ,N be the exact source points, u(x; z j) be the exact total fields cor-
responding to the sound-soft obstacle D such that ∂D belongs to U. Then the cost functional m(α) is
convergent in the sense that

lim
α→0

m(α) = 0. (2.9)
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Proof. By Lemma 2.1, given ε j > 0, there exists ϕ j ∈ L2(Λ) such that∥∥∥ui(x; z j) + (S1ϕ j)(x)
∥∥∥

L2(∂D)
≤ ε j, j = 1, · · · ,N.

Since the scattered field of a radiating solution to the Helmholtz equation depends continuously on the
boundary (cf. [7]), there exists some constant C1 such that∥∥∥(Sϕ j)(x) − us(x; z j)

∥∥∥
L2(ΓR)

≤ C1

∥∥∥(S1ϕ j)(x) − us(x; z j)
∥∥∥

L2(∂D)
,

i.e., ∥∥∥u(x; z j) − ui(x; z j) − (Sϕ j)(x)
∥∥∥

L2(ΓR)
≤ C1

∥∥∥u(x; z j) − ui(x; z j) − (S1ϕ j)(x)
∥∥∥

L2(∂D)

= C1

∥∥∥ui(x; z j) + (S1ϕ j)(x)
∥∥∥

L2(∂D)

≤ C1ε j,

where we have used the fact that u(x; z j) = 0, x ∈ ∂D. The continuity of the Hankel function H(1)
0

implies that there exists δ j > 0 such that for z′j satisfying |z j − z′j| ≤ δ j, it holds that∥∥∥ui(x; z j) − ui(x; z′j)
∥∥∥

L2(ΓR)
≤ ε j.

Based on the above arguments, it holds that∥∥∥u(x; z j) − ui(x; z′j) − (Sϕ j)(x)
∥∥∥

L2(ΓR)
≤

∥∥∥u(x; z j) − ui(x; z j) − (Sϕ j)(x)
∥∥∥

L2(ΓR)
+

∥∥∥ui(x; z j) − ui(x; z′j)
∥∥∥

L2(ΓR)

≤ (C1 + 1)ε j

:= Cε j.

Further, we deduce that

µ(ϕ, ∂D, z;α) ≤ (1 + C2)
N∑

j=1

ε2
j + α

N∑
j=1

∥∥∥ϕ j

∥∥∥2

L2(Λ)
→ (1 + C2)

N∑
j=1

ε2
j , α→ 0.

The theorem is accomplished due to the arbitrariness of each ε j, j = 1, 2, · · · ,N.

We are now in a position to state the main convergence result.

Theorem 2.3. Let {αn} be a null sequence, (Γn, zn) be the corresponding sequence of optimal obstacle-
source pairs for the regularization parameter αn. Then there exists a convergent subsequence of
{(Γn, zn)} . Assume that u is the exact total field of a domain D such that ∂D is contained in U. Then
every limit point (Γ∗, z∗) of (Γn, zn) represents an optimal obstacle-source pair. In other words, if the
incident wave due to the source point z∗ is scattered by the sound-soft obstacle D∗ bounded by Γ∗, then
the total field vanishes on Γ∗.

Proof. The existence of convergent subsequences of (Γn, zn) follows from the compactness of U × V .
Let (Γ∗, z∗) be the limit point. Without loss of generality, we assume that (Γn, zn) → (Γ∗, z∗), n → ∞,
i.e., Γn → Γ∗, zn → z∗, n→ ∞. Let u∗j be the solution to the direct scattering problem with the incident
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wave emitted by the source point z∗j for the obstacle with boundary Γ∗, i.e., the boundary condition
reads

u∗j(·) + ui(·; z∗j) = 0, on Γ∗. (2.10)

Since (Γn, zn) is optimal for the parameter αn, there exists ϕn ∈ (L2(Λ))N such that

µ(ϕn,Γn, zn;αn) = m(αn),

for n = 1, 2, · · · . From Theorem 2.2, we conclude that the boundary data satisfies∥∥∥ui(x; zn
j) + (Sn

1ϕ
n
j)(x)

∥∥∥
L2(Γn)

→ 0, n→ ∞. (2.11)

From the condition that Γn → Γ∗, zn
j → z∗j, n → ∞, we obtain that us

j = u∗j with us
j = lim

n→∞
Sn

1ϕ
n
j , and the

total field us
j(·) + ui(·; z∗j) must vanish on Γ∗ as a result of (2.10).

Remark 2.3. As far as we know, even for the standard decomposition method for the inverse obstacle
problem, a uniqueness result for the optimal solution is not available. It is commented in [7] that

“Since we do not have uniqueness either for the inverse scattering problem or for the opti-
mization problem, in the above convergence analysis we cannot expect more than convergent
subsequences.”

For the more complicated co-inversion problem considered here, the uniqueness for the optimal
solution in Theorem 2.1 is still open. Therefore, the above comments from [7] are also applicable to
our convergence analysis.

Based on the previous discussions, the rudiments of our optimization procedure is summarized in
Algorithm 1.

Remark 2.4. For simplicity of implementation, the regularization parameter α is chosen by the trial-
and-error strategy and the error tolerance is independent of α in this paper. To improve the per-
formance of the algorithm, α could be chosen by, for instance, the Morozov’s discrepancy principle
according to the noise level. Meanwhile, the error tolerance should dependent on the value of α, and
may not be reached if α is too large.

At the end of this section, we would like to remark that, the nonlinear optimization problems gener-
ally suffer from the notorious difficulty of local minimums. Specifically, performance of any iterative
solver for the optimization problem (2.8) would be unavoidably affected by the initial guess (Γ0, z0).
Therefore, choosing an appropriate initial value is highly crucial for the success of our optimization
method. Nevertheless, the a priori information of the rough (Γ0, z0) is not straightforwardly available.
And it is thus vital to develop a fast and cheap strategy for resolving this crux, which will be the main
concern of the next section.

3. Direct sampling for choosing the initial guess

In the previous section, we develop an optimization method to reconstruct the obstacle-source pair
(∂D, S ) from the total field U and it has been pointed out that the initial guess (Γ0, z0) should play
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Algorithm 1: Optimization method for the co-inversion problem.

Step 1 Given the total field data u(x; z j)|ΓR , j = 1, · · · ,N, choose some suitable class U×V
of admissible obstacle-source pairs (∂D, S );

Step 2 Select an initial curve for the boundary ∂D and an initial guess for the N ordered
points z′ = (z′1, z

′
2, · · · , z

′
N);

Step 3 Place a suitable auxiliary curve Λ inside D;
Step 4 Determine the obstacle-source pair (∂D, S ) by minimizing (2.4), which is formu-

lated by the following implementations for j = 1, · · · ,N:

(a) Subtract the incident field ui(x; z′j) due to the source point z′j from the mea-
sured total field u(x; z j), where the incident field ui(x; z′j) is given by (1.1);

(b) Solve the regularized Eq (2.3) with an appropriate regularization parameter
α to find the density ϕαj ;

(c) Represent the approximate scattered field us
α(x; z′j) in terms of the single-layer

representation (2.1) with density ϕαj .

Step 5 When the error tolerance is fulfilled, the minimizer (Γ∗, z∗) of (2.4) can be viewed
as the desired reconstruction.

an important role in the quality of reconstruction. Noticing that the direct sampling methods (DSM)
are independent of any a priori information of the unknown objects and easy to implement, we wish
to utilize the sampling-type methods to seek the initial guess for the source S and the obstacle D,
respectively.

3.1. Determine the initial guess of source points

Motivated by the direct sampling schemes for inverse obstacle/source scattering problems, we first
propose the total field version of indicator functions to reconstruct the source points by knowledge of
U. Let Ω1 ⊂ BR be a bounded sampling domain such that D ∪ S ⊂ Ω1. For any sampling point y ∈ Ω1,
we define N indicator functions as follows:

I j(y) =

∣∣∣∣∣∣
∫

ΓR

u(x; z j)Φ(x, y)ds(x)

∣∣∣∣∣∣ , j = 1, · · · ,N. (3.1)

Note that the indicators rely on the inner product of the fundamental solution with respect to the total
field data rather than the usual incident or scattered data. We expect to locate the peak of I j(y) for each
j and take the corresponding maximum point z̃ j as an approximation of the exact source z j.

Before analyzing the characteristics of I j(y), we first claim two lemmas which will play a key role
in the subsequent analysis.

Lemma 3.1. [17, Lemma 3.1] Let g ∈ H1/2 (∂D) . Then the scattering problem

∆w + k2w =0 in R2\D, (3.2)
w =g on ∂D, (3.3)
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√
r
(
∂w
∂r
− ikw

)
→ 0 as r → ∞, (3.4)

admits a unique solution w ∈ H1
loc

(
R2\D

)
. Moreover, there exists a constant C > 0 such that∥∥∥∥∥∂w

∂ν

∥∥∥∥∥
H−1/2(∂D)

≤ C‖g‖H1/2(∂D),

with ν the unit outer normal to the boundary ∂D.

For any g ∈ H1/2 (∂D), the Dirichlet-to-Neumann mapping T : H1/2 (∂D) → H−1/2 (∂D) for the
scattering problems (3.2)–(3.4) is defined as

T(g) =
∂w
∂ν
.

By Lemma 3.1, T is a bounded linear operator and we will denote ‖T‖ its operator norm in this paper.
Analogous to [17, Lemma 3.2], one can immediately obtain the following estimate concerning the

scattered field.

Lemma 3.2. Let L := min1≤ j≤N dist
(
z j,D

)
. Then for each j = 1, · · · ,N, the following estimate holds

|us(x; z j)| ≤ C js(1 + ‖T‖)k−1(RL)−1/2,

where x ∈ ΓR is the receiver and the constant C js is dependent of k,R and L.

The following theorem sheds light on the indicating properties of I j(y), j = 1, · · · ,N.

Theorem 3.1. Let I j(y), j = 1, · · · ,N, be defined by (3.1) and assume that

L j := dist(z j,ΓR) > sup
y∈Ω1

|y − z j|. (3.5)

Then there exists a constant C j > 0 such that for each y ∈ Ω1, y , z j,

I j(y) ≤ C jk−1|y − z j|
−1/2, j = 1, · · · ,N. (3.6)

Proof. We first recall the following estimate for the Hankel function [17, (3.8)]:

∣∣∣H(1)
0 (t)

∣∣∣ ≤ √
2
πt
, ∀t > 0. (3.7)

Then from the representation of incident field ui(x; z j), it can be easily derived that∫
ΓR

∣∣∣∣ui(x; z j)Φ(x, y)
∣∣∣∣ ds(x) =

∫
ΓR

∣∣∣∣∣∣ i
4

H(1)
0 (k|x − z j|)

i
4

H(1)
0 (k|x − y|)

∣∣∣∣∣∣ ds(x)

≤
1

16

∫
ΓR

√
2

πk|x − z j|

√
2

πk|x − y|
ds(x)
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=
1

8kπ

∫
ΓR

1√
|x − z j||x − y|

ds(x). (3.8)

Further, by Lemma 3.2, we deduce that there is a positive constant C js such that∫
ΓR

∣∣∣us(x; z j)Φ(x, y)
∣∣∣ ds(x) =

∫
ΓR

∣∣∣us(x; z j)
∣∣∣ ∣∣∣∣∣ i

4
H(1)

0 (k|x − y|)
∣∣∣∣∣ ds(x)

≤
C js
√

2
4k3/2(πRL)1/2

∫
ΓR

1 + ‖T‖√
|x − y|

ds(x). (3.9)

Combining (3.8) and (3.9), together with the aid of |x − y| ≥
∣∣∣|x − z j| − |y − z j|

∣∣∣, we have

I j(y) =

∣∣∣∣∣∣
∫

ΓR

ui(x; z j)Φ(x, y)ds(x) +

∫
ΓR

us(x; z j)Φ(x, y)ds(x)

∣∣∣∣∣∣
≤

∫
ΓR

∣∣∣∣ui(x; z j)Φ(x, y)
∣∣∣∣ ds(x) +

∫
ΓR

∣∣∣us(x; z j)Φ(x, y)
∣∣∣ ds(x)

≤ C j1

(∫
ΓR

k−1(|x − z j||x − y|)−1/2ds(x) +

∫
ΓR

k−3/2(1 + ‖T‖)|x − y|−1/2ds(x)
)

≤ C j1

( ∫
ΓR

k−1
(
|x − z j|

∣∣∣|x − z j| − |y − z j|
∣∣∣ )−1/2

ds(x)

+

∫
ΓR

k−3/2(1 + ‖T‖)
∣∣∣|x − z j| − |y − z j|

∣∣∣−1/2
ds(x)

)
,

where

C j1 = max

 1
8π
,

C js
√

2
4(πRL)1/2

 .
Assumption (3.5) implies that there exists a positive constant C j2 such that L j ≥ (1+C j2) supy∈Ω1

|y−
z j|. Then

I j(y) ≤
2πC j1R

k
√

L j
√

C j2|y − z j|
+

2C j1π(1 + ‖T‖)R

k3/2
√

C j2|y − z j|

≤ C jk−1|y − z j|
−1/2,

where

C j =
2πRC j1√

C j2

 1√
L j

+
1 + ‖T‖
√

k

 ,
and this completes the proof.

In virtue of the above theorem, each function I j(y) should decay as the sampling point y recedes
from the corresponding source point z j. Hence, the initial detection can be conveniently chosen by
locating the point z̃ j where I j(y) reaches its apex. Then in the optimization process, the exact source
location z j could be effortlessly and accurately found in the vicinity of z̃ j. This indicating behavior will
be numerically verified by the experiments in the next section.
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3.2. Determine the initial guess of the obstacle

The indicator function proposed in the previous subsection has the capability of locating the approx-
imate source points, but it usually fails to image the shape of obstacle. Thus a further sampling step
for identifying the rough obstacle should be taken into account. By integrating the approximate source
points into the reverse time migration (RTM) approach [18], we propose an approximate reverse time
migration method to reconstruct the obstacle in this subsection.

To reconstruct the obstacle, information about the scattered field is indispensable in the classical
RTM. However, the scattered field can not be measured directly due to the existence of unknown
source points. So we are going to approximate the scattered field by subtracting the incident field
ui(x; z̃ j) due to the numerical source point z̃ j from the measured total field u(x; z j), i.e.,

us
j(x) = u(x; z j) − ui(x; z̃ j), x ∈ ΓR, (3.10)

and develop an imaging functional ID(y) using the approximate scattered field us
j(x). To this end,

confining the imaging domain to Ω2 ⊂ Ω1 such that D ⊂ Ω2, S ⊂ Ω1\Ω2, and we define the imaging
function for y ∈ Ω2 by

ID(y) := −k2Im

 N∑
j=1

Φ(y, z j)
∫

ΓR

us
j(x)Φ(x, y)ds(x)

 . (3.11)

Note that, in (3.11), instead of the exact scattered field us(x; z j) corresponding to the j-th source point z j,

we use an approximate scattered field us
j(x) for z j. That is why this method is called the approximate

reverse time migration method. Once the source points are retrieved, the indicating behavior of the
approximate RTM immediately follows the original RTM [17,18]. The imaging function ID(y) provides
a qualitative information of the obstacle D, which will be used as a useful clue to discover the obstacle
in the optimization method. We emphasize that, if this sampling procedure for D is not implemented,
then it would be difficult to find a good initial guess for D or a suitable internal curve Λ. In this
case, such an apriori information about the obstacle is usually necessary to facilitate the realization of
Algorithm 1.

We end this section with a brief description of Algorithm 2, which can be used to determine the
initial guess for the optimization method proposed in Section 2.

4. Numerical experiments

In this section, we will present several numerical experiments to demonstrate the performance of
the proposed method. In our experiments, synthetic total field data are generated by reformulating
the direct problems (1.2)–(1.4) as a boundary integral equation and the integral equation is solved by
the Nyström method [7]. Here we use a numerical quadrature rule with 64 equidistant grid points on
[0, 2π]. The receivers are set to be xr = 4(cos θr, sin θr), θr = rθ/NR, r = 1, · · · ,NR with θ ∈ (0, 2π]
the observation aperture. For the full-aperture case, θ = 2π, NR = 120. For the limited-aperture case,
we consider two cases with θ = 3π/2, NR = 90 and θ = π, NR = 60, respectively. The forward solver
provides us with the total field data

u(xr; z j), r = 1, · · · ,NR, j = 1, · · · ,N.
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Algorithm 2: Determine the initial guess by the direct sampling methods.

Step 1 For each j = 1, · · · ,N, collect the total field data u(x; z j)|ΓR;
Step 2 Choose a proper sampling domain Ω1 ⊂ BR such that D ∪ S ⊂ Ω1 and generate

the sampling grid T1 over Ω1;
Step 3 Locate the maximum of I j(y) for each j and take the corresponding z̃ j as an ap-

proximation of z j. The locations {z̃ j}
N
j=1 could be found one by one in this way and

will be reused as the initial guess for the source points in the optimization method;
Step 4 For j = 1, . . . ,N, compute the approximate scattered field us

j by (3.10);
Step 5 Choose a proper imaging domain Ω2 ⊂ Ω1 such that D ⊂ Ω2, S ⊂ Ω1\Ω2 and

generate the sampling grid T2 over Ω2;
Step 6 Evaluate ID(y) for the imaging point y ∈ T2 by (3.11) and accordingly select an

approximate initial guess for the boundary curve in the optimization method.

To test the stability of the numerical method, random noise of different levels is added to the total
field data u(x; z j) to produce the noisy total field data

uε := u + εr1|u|eiπr2 ,

where r1, r2 are two uniformly distributed random numbers ranging from −1 to 1 and ε > 0 is the noise
level. We use ε = 10% in Examples 1–3 and ε = 5% in Example 4.

In all the subsequent examples, the sampling domains Ω1 are chosen as squares centered at the
origin with T1 being a 200 × 200 uniform grid. The imaging domains Ω2 are individualized case by
case, according to the sampling results for the point sources. The imaging points T2 are selected as
100 × 100 uniform grids distributed over Ω2. For the optimization method, we choose the auxiliary
curve Λ to be a circle centered at the origin with radius rΛ = 0.6. The integral over the unit circle S
is numerically approximated by the trapezoidal rule with 64 grid points. To solve the nonlinear least-
squares problem, the Levenberg-Marquardt algorithm is adopted with both functional value stopping
criterion and successive iterate stopping criterion chosen to be 10−6 for the full-aperture case and 10−4

for the limited-aperture problems. The starting curve Γ0 for the Levenberg-Marquardt algorithm is a
circle centered at the origin with radius rΓ0 =

∣∣∣arg maxy∈Ω2 ID(y)
∣∣∣. For j = 1, · · · ,N, the starting guesses

for the source points {z0
j}

N
j=1 are chosen to be {z̃ j}

N
j=1. The regularization parameter α is selected by trial

and error. The ansatz function r(t) is chosen in the (2M + 1)-dimensional subspace UM ⊂ U and can
be expanded by trigonometric polynomials of degree less than or equal to M, i.e.,

rM(t) = rΛ + a0 +

M∑
m=1

(am cos mt + bm sin mt), (4.1)

with some M ∈ N+. Unless otherwise specified, M = 8 is used in what follows.
To evaluate the reconstruction quantitatively, we introduce an equidistant set of knots on [0, 2π] by

ti := 2πi/N1, i = 0, 1, · · · ,N1 − 1, with N1 the number of knots chosen to be 256 in our numerical
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experiments. The discrete relative L2 error of the boundary curve is defined by

ED :=

(
N1∑
i=1
|rM(τi) − r∗(τi)|2

)1/2

(
N1∑
i=1
|r∗(τi)|2

)1/2 , (4.2)

with r∗ standing for the exact boundary curve and τi = τ(ti) being ti or some transformation of ti

depending on whether the exact boundary is star-like or not, respectively.
In the following figures regarding geometrical settings of the problem, the red and blue points denote

respectively the exact source locations and receivers, the green solid line denotes the boundary of the
obstacle, the black and purple dashed lines denote the boundary of the sampling domains Ω1 and Ω2,

respectively. In the figures about the results of the numerical experiments, the small black ‘+’ markers
are the exact source points, the small red circles stand for the reconstructed source points, the green
solid line denotes the exact boundary of the obstacle, the blue dashed line denotes the reconstructed
boundary. In addition, for ease of comparison, the indicator functions I j(y), j = 1, · · · ,N, and the
imaging function ID(y) are normalized so that the maximum value of each function is 1.

Example 1. In the first example, we consider the reconstruction of a starfish-shaped obstacle and the
influence of source quantities. The exact boundary of the starfish-shaped obstacle is parameterized by

xS (t) = (1 + 0.2 cos 5t)(cos t, sin t), 0 ≤ t ≤ 2π.

We first consider the case where the five source points are respectively located at

S 1 = {(2, 2), (−0.5, 1.8), (−1.6,−1), (0,−2.2), (2,−1.2)}.

The sampling domains are chosen to be Ω1 = [−2.5, 2.5]×[−2.5, 2.5], Ω2 = [−1.5, 1.5]×[−1.5, 1.5].
The regularization parameter and the wave number are set to be α = 10−8 and k = 5, respectively.

Figure 2(a) exhibits the geometry setting. Figure 2(b) shows the reconstructed locations of S 1 by
the DSM and we can find that the reconstructed locations of the source points are very close to the
exact locations. Figure 2(c) shows the image of the imaging function ID(y) over the sampling domain
Ω2. We find that in Figure 2(c), the shape of the obstacle can be roughly captured. In Figure 2(d),
reconstruction of the optimization method is depicted, where the initial guess for the source points are
chosen to be the numerical source points obtained by the DSM and the initial curve is represented by
the black dashed circle in Figure 2(c). Further, we compute the error of boundary curve by (4.2) with
τi = ti, i = 1, · · · ,N and in this case ED = 5.73%. In Table 1, we list the exact and reconstructed
locations of source points S 1 by the DSM and the optimization method, respectively. According to
Table 1 and Figure 2, we want to point out that both the DSM and optimization method could produce
satisfactory reconstructions of the source points. A promising advantage of the optimization method is
that the obstacle can also be reconstructed quantitatively, i.e., a significantly more sharper profile can
be identified by the optimization method.

Next we consider the reconstruction from a different set of source points, which is given by S 2 =

{(1.3, 0), (1.35, 0.1), (0, 2), (0,−2), (−2, 0)}. In this case, the sampling domains are adapted to be Ω1 =

[−2.2, 2.2] × [−2.2, 2.2], Ω2 = [−1.2, 1.2] × [−1.2, 1.2]. The other parameters remain unchanged. We
refer to Figure 3(a) for the geometry setting.
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(a) (b) (c) (d)

Figure 2. Geometry setting and the reconstruction of the starfish and S 1. (a) Problem ge-
ometry; (b) exact and reconstructed locations of the source points by the DSM; (c) image of
ID(y); (d) reconstruction by the optimization method.

(a) (b) (c)

(d) (e) (f)

Figure 3. Geometry setting and the reconstruction of the starfish and S 2. (a) Problem ge-
ometry; (b) image of I1(y) (white “+”: exact location of the first source point); (c) exact and
reconstructed locations of the source points with I j(y), j = 1, · · · 5; (d) image of ID(y); (e)
reconstruction by the optimization method; (f) optimization result in a local domain.
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Figure 3(b) shows the indicator I1(y) over the sampling domain Ω1. One can observe that the maxi-
mizer of I1(y) coincides well with the exact source location. Figure 3(c) shows that all the reconstructed
source locations match well with the exact positions. In Figure 3(d), the imaging function ID(y) is plot-
ted. From Figure 3(d), we find that the maximizer of ID(y) incurs on the boundary of the obstacle.

Compared with Figure 2(c), it seems that the current result deteriorates slightly. A reason account-
ing for this fact is the specific distribution of the source points where two points are almost adjacent
to each other. In Figure 3(e), we show the reconstruction of the starfish by the optimization method.
Figure 3(e) demonstrates that the quality of reconstruction for the left side of the obstacle is better than
that of the right side. Physically speaking, this is due to the fact that the right side of the obstacle is
affected by the nearby source points 1 and 2. Moreover, the adjacent source points 1 and 2 could be
individually identified as long as the sampling grid is sufficiently fine. To see the local reconstruction
more clearly, we intercept a part [1, 1.4] × [−0.1, 0.2] of Figure 3(e) and it is zoomed in as Figure 3(f).

In Table 2, we list the exact and reconstructed source locations. To evaluate the reconstruction of the
obstacle quantitatively, we compute the errors between the exact boundary curve and the reconstructed
boundary curve as (4.2) with τi = ti. In this case, the error of the boundary curve is ED = 7.90%.

Comparing the above two cases, it can be found that our method could simultaneously produce
a rather accurate reconstruction of the obstacle and sources, no matter whether the source points are
relatively sparse or dense, or even quite close to the obstacle.

Table 1. Reconstruction of the source points S 1.

Exact
Location

Reconstructed Location

DSM Optimization

Point 1 (2, 2) (1.98, 1.98) (2.01, 1.98)
Point 2 (−0.5, 1.8) (−0.52, 1.83) (−0.50, 1.83)
Point 3 (−1.6,−1) (−1.58,−0.98) (−1.56,−0.98)
Point 4 (0,−2.2) (0.02,−2.19) (−0.01,−2.19)
Point 5 (2,−1.2) (2.03,−1.23) (1.99,−1.23)

In Figure 4, we consider the reconstruction with N(= 2, 4, 6, 8) source points. The wave number and
the regularization parameter is chosen to be k = 8 and α = 10−6, respectively. The sampling domains
are chosen to be Ω1 = [−2.5, 2.5]× [−2.5, 2.5], Ω2 = [−1.5, 1.5]× [−1.5, 1.5]. Further, we take k = 5, 8,
respectively, and list the relative L2 errors for the reconstruction of the starfish-shaped obstacle in Table
3. Table 3 shows that the error of reconstruction decreases as the number of source points increases.

Example 2. In this example, we aim to investigate the accuracy of reconstruction by considering a
circular obstacle as well as different number of source points. The parametric boundary of the obstacle
is given by xC(t) = (cos t, sin t), 0 ≤ t < 2π, and α = 10−8, Ω1 = [−2.5, 2.5] × [−2.5, 2.5], Ω2 =

[−1.2, 1.2] × [−1.2, 1.2].
To analyze the reconstruction quantitatively, the relative errors of the boundary curves are computed

as (4.2) with τi = ti. Table 4 shows the reconstructions in different cases by varying the wave numbers
and the number of source points. In particular, a suitable choice of the parameters (for instance, k = 8
and N = 6) would produce a stunningly accurate reconstruction. Figure 5 exhibits the reconstruction
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4. Reconstruction of the starfish and different numbers of source points. The 1st
column: problem geometry; the 2nd column: exact and reconstructed locations of the source
points with DSM; the 3rd column: images of ID(y); the 4th column: reconstruction by the
optimization method.
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Table 2. Reconstruction of the source points S 2.

Exact source Reconstruction

Point 1 (1.3, 0) (1.25, 0.02)
Point 2 (1.35, 0.1) (1.30, 0.07)
Point 3 (0, 2) (−0.00, 1.98)
Point 4 (0,−2) (−0.00,−1.98)
Point 5 (−2, 0) (−1.99, 0.02)

Table 3. Relative L2 errors for reconstructions of the starfish.

N 2 4 6 8
k = 5 8.60% 7.45% 8.01% 5.84%
k = 8 15.46% 6.63% 5.93% 4.68%

of the circle and N(= 1, 2, 4, 6, 8) source points with wave number k = 5. In addition, it deserves noting
that, even if we take N = 1, both the source and the obstacle can be reconstructed, though the error is
slightly large (see Figure 5(a) and the second column in Table 4).

Table 4. Relative L2 errors for reconstructions of the circle with different numbers of source
points.

N 1 2 4 6 8

k = 5 14.28% 7.32% 2.30% 2.47% 1.24%
k = 8 11.65% 5.44% 1.38% 0.72% 0.76%

Further, we test the effectiveness of the DSM proposed in Section 3 for choosing the initial guess.
The parameters are chosen to be α = 10−9, k = 8,N = 8. The exact source points are given by

S 3 = {(2, 1), (1.8, 1.4), (0, 1.6), (−1.6, 1.8), (−2, 0), (−2,−2), (0,−2.1), (1.8,−1.9)}.

For comparison purpose, we consider the following two sets of artificially chosen initial guess

S 4 = {(2.1, 0.9), (1.85, 1.3), (−0.1, 1.75), (−1.7, 1.7), (−1.9, 0.05), (−1.94,−1.9), (0,−2.13), (1.8,−1.8)},

and

S 5 = {(2.3, 1.3), (2.1, 1.7), (0.3, 1.3), (−1.3, 1.5), (−2.3,−0.3), (−2.3,−2.3), (−0.3,−1.8), (1.5,−1.6)},

respectively. Taking S 4 and S 5 as the initial guesses for the source points respectively, we then compare
the numerical results with the case where the initial guess is determined by the DSM. The relative L2

errors for k = 5 are listed in Table 5. Furthermore, we present the reconstructions of the circle as well
as the source points in Figure 6. From Table 5 and Figure 6, one can observe that the DSM plays a sig-
nificant role in the reconstruction by providing a good initial guess for the optimization process, which
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(a) (b) (c)

(d) (e)

Figure 5. Reconstructions of the circle and N source points. (a) N = 1; (b) N = 2; (c) N = 4;
(d) N = 6 (e) N = 8.

is a key step for achieving a satisfactory reconstruction. If the initial source points somewhat deviate
from the true ones, then the reconstruction would drastically deteriorate, see Figure 6(b). Therefore,
results of the DSM indeed exert an immense impact on the effectiveness of the optimization. And a
good initial knowledge generated by a high-resolution sampling grid T1 is the essential prerequisite for
achieving the high-quality reconstruction.

Table 5. Relative L2 errors for reconstructions of the circle subject to different initial guesses.

S 4 S 5 DSM
k = 5 5.26% 48.87% 1.78%
k = 8 3.35% 31.41% 1.22%

Example 3. This example is designed to check the validity of our method when the boundary of obsta-
cle is not star-like. Now we consider the reconstruction of two kite-shaped obstacles with boundaries
∂D described by the parametric representations

kite-I: x(1)
K := (x(1)

1 , x(1)
2 ) = (cos t + 0.15 sin t + 0.35 cos 2t − 0.35, 1.2 sin t),

kite-II: x(2)
K := (x(2)

1 , x(2)
2 ) = (cos t + 0.65 cos 2t − 0.65, 1.5 sin t),

respectively. In this example, the sampling domains are taken to be Ω1 = [−2.5, 2.5] × [−2.5, 2.5],
Ω2 = [−1.5, 1.5] × [−1.5, 1.5]. To compute the accuracy of reconstruction, the relative errors of the
boundary curves are computed by (4.2) with

τ(`)
i = arc tan

x(`)
2 (ti)

x(`)
1 (ti)

, ` = 1, 2.
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(a) (b) (c)

Figure 6. Reconstructions of the circle and 8 source points with different initial guesses. (a)
S 4; (b) S 5; (c) DSM.

In Figure 7, we take the ansatz function space of different dimensions and present the reconstruc-
tion of the kite-I with k = 5 and α = 10−6. By taking different M(= 2, 4, 6, 8, 12, 20) in (4.1), we
compute the reconstruction errors defined by (4.2). From the errors in Table 6, we observe that the
accuracy of inversion is insensitive to moderately large M. Except for the cases M = 2 and M = 4, the
reconstruction is almost negligibly influenced by the dimension of UM.

Next, we fix M = 8 and reconstruct the two kites. In Table 7, we provide the errors for reconstruct-
ing the kites with different number of source points. These results illustrate that the reconstructions of
kite-I are superior to those of kite-II, which is probably due to the fact that the boundary fluctuation of
kite-I is relatively mild in comparison to that of kite-II.

In Figure 8, we plot the reconstruction of kite-II with N(N = 2, 6, 8, 10) source points. It can be
found that both the source points and the obstacle are reconstructed well. So the proposed method also
works for the recovery of non-starlike scatterers.

(a) (b) (c) (d)

Figure 7. Reconstructions of the kite-I and 12 source points with subspace UM of different
dimensions: (a) M = 2; (b) M = 4; (c) M = 12; (d) M = 20.

Table 6. Relative L2 errors for reconstructions of the kite-I with 12 source points.

M 2 4 6 8 12 20

ED 14.39% 6.68% 5.97% 5.77% 5.75% 5.75%
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Table 7. Relative L2 errors for reconstructions of the kite-shaped obstacles.

Error of kite-I Error of kite-II

N k = 3, α = 10−10 k = 5, α = 10−9 k = 3, α = 10−9 k = 5, α = 1 × 10−8

2 10.29% 7.00% 10.57% 8.27%
4 7.72% 4.81% 11.30% 9.96%
6 7.33% 5.07% 11.46% 12.98%
8 7.33% 4.63% 11.87% 10.91%
10 6.93% 4.84% 12.04% 10.56%

Table 8. Relative L2 errors for the reconstructions of the starfish with limited angles.

k = 8 k = 5

θ N = 8 N = 4 N = 8 N = 4
π 14.30% 16.17% 8.39% 12.04%
3π/2 7.06% 7.33% 7.99% 7.92%

(a) (b) (c) (d)

Figure 8. Reconstructions of kite-II and source points of different number: (a) N = 2; (b)
N = 6; (c) N = 8; (d) N = 10.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 9. Reconstructions of the starfish and different numbers of source points from limited
aperture data. (The 1st column: problem geometry; the 2nd column: exact and reconstructed
locations of the source points with DSM; the 3rd column: image of ID(y); the 4th column:
reconstruction by the optimization method. The 1st row: N = 4, θ = 3π/2; the 2nd row:
N = 8, θ = 3π/2; the 3rd row: N = 4, θ = π; the 4th row: N = 8, θ = π.)
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Example 4. In the last example, we plan to reconstruct the obstacle-source pair with limited-aperture
measurements. Motivated by realistic applications where only partial data is available, we test the
proposed method when the total field is only accessed on a portion of the measurement curve. In this
example, we collect the total field recorded by the receivers located on a part of ΓR with the aperture
chosen to be θ = 3π/2 and π, respectively. The regularization parameter is chosen to be α = 10−6. The
sampling domains are Ω1 = [−2.5, 2.5] × [−2.5, 2.5] and Ω2 = [−1.5, 1.5] × [−1.5, 1.5].

In Table 8, we list the relative L2 errors of the boundary curves with respect to different parameters
k, θ and N. Figure 9 shows the reconstruction for the starfish together with N(= 4, 8) source points in
the limited-aperture case with k = 8. Figure 9 illustrates that the part of boundary curve encompassed
by the receivers can always be well reconstructed. Typically, due to the lack of information, recovery
of the opposite side oriented towards the open aperture is less accurate. Anyhow, all the numerical
results show that, even with limited-aperture data, the reconstruction method still reasonably works.

5. Conclusions

In this work, we develop a novel optimization method to simultaneously reconstruct a sound-soft
obstacle and multiple source points from near field scattering data. To obtain a good initial guess for the
optimization method, a two-step sampling method is also developed to respectively image the rough
source points and obstacle. Theoretically, we analyze the convergence of the optimization method and
the indicating behaviors of the sampling scheme. Numerical results are provided to demonstrate the
feasibility and promising features of the proposed method. Our future work consists of the theoretical
justification of the uniqueness issue, which may be established by exploiting the nonlinearity of the
DtN map and the Complex Geometrical Optics (CGO) solutions as in [29]. We will also consider the
extension to three-dimensional model and the other boundary conditions, as well as the applicability
in the scenarios of electromagnetic or elastic waves.
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