Research article Special Issues

Revisiting Taibleson's theorem

  • Received: 26 November 2021 Revised: 25 January 2022 Accepted: 26 January 2022 Published: 10 February 2022
  • A new characterization of the weighted Taibleson's theorem for generalized Hölder spaces is given via a Hadamard-Liouville type operator (Djrbashian's generalized fractional operator).

    Citation: Humberto Rafeiro, Joel E. Restrepo. Revisiting Taibleson's theorem[J]. Electronic Research Archive, 2022, 30(2): 565-573. doi: 10.3934/era.2022029

    Related Papers:

  • A new characterization of the weighted Taibleson's theorem for generalized Hölder spaces is given via a Hadamard-Liouville type operator (Djrbashian's generalized fractional operator).



    加载中


    [1] H. Aikawa, Hölder continuity of the Dirichlet solution for a general domain, Bull. London Math. Soc., 34 (2002), 691–702. https://doi.org/10.1112/S0024609302001522 doi: 10.1112/S0024609302001522
    [2] D. I. Cruz-Báez, J. Rodríguez, On new characterizations of Lipschitz and Besov type spaces, Arch. Math., 79 (2002), 39–45. https://doi.org/10.1007/s00013-002-8282-5 doi: 10.1007/s00013-002-8282-5
    [3] A. Hinkkanen, Modulus of continuity of harmonic functions, J. Analyse Math., 51 (1988), 1–29. https://doi.org/10.1007/BF02791117 doi: 10.1007/BF02791117
    [4] M. H. Taibleson, Lipschitz classes of functions and distributions in $E_n$, Bull. Am. Math. Soc., 69 (1963), 487–493. https://doi.org/10.1090/S0002-9904-1963-10972-6 doi: 10.1090/S0002-9904-1963-10972-6
    [5] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Hardy-type operators in variable exponent lebesgue spaces, in Operator Theory: Advances and Applications, Springer, (2016), 1–26. https://doi.org/10.1007/978-3-319-21015-5_1
    [6] N. K. Bari, S. B. Stechkin, Best approximations and differential properties of two conjugate functions, Trudy Mosk. Mat. Obshch., 5 (1956), 483–522.
    [7] S. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, 1993.
    [8] F. E. Enriquez, Characterization of spaces with non-integer differentiation in terms of harmonic prolongations[Master's Thesis]. Moscow: Peoples Friendship University of Russia; 1995.
    [9] A. M. Jerbashian, V. A. Jerbashian, Functions of $\omega$-bounded type in the half-plane, Comput. Methods Funct. Theor., 7 (2007), 205–238. https://doi.org/10.1007/BF03321641 doi: 10.1007/BF03321641
    [10] A. M. Jerbashian, J. E. Restrepo, A boundary property of some subclasses of functions of bounded type in the half-plane, Fract. Calc. Appl. Anal., 20 (2017), 1531–1544. https://doi.org/10.1515/fca-2017-0080 doi: 10.1515/fca-2017-0080
    [11] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. https://doi.org/10.1515/9781400883882
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1276) PDF downloads(77) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog