Review Special Issues

Ecoexergy in the context of environmental sciences

  • Received: 07 June 2023 Revised: 01 September 2023 Accepted: 04 September 2023 Published: 15 September 2023
  • Nowadays, it is possible to assert that the causality of environmental problems entails a complex social, economic, cultural and political background; faced with such a situation, it is essential to have an operational science that considers the human factor that is in constant interaction with the environment (socio-ecological systems), while seeking sustainable development. Because of that, it became necessary to join different disciplines in a construct called Environmental Sciences, whose main objective is to study and solve problems related to human-environment interactions.

    Endorsing the concept of exergy to an interdisciplinary science implies understanding how society satisfies its needs with the natural resources provided by the various ecosystems and how they sustain demand in the man-environment interaction cycle, starting from the development of structural and functional attributes in a dynamic flow of matter and energy. This can be addressed with the first and second laws of thermodynamics by allowing the use of holistic indicators in the Environmental Sciences; one such indicator is ecoexergy, which describes the state of an ecosystem based on the biomass content and genetic information. Thus, this work presents an outline of the incursion of exergy in the context of environmental sciences, which implies that the ecosystem is an open system whose behavior adheres to the laws of thermodynamics.

    Citation: Yessica Linares González, Ricardo Peña Moreno, Vladimir Serkin, Laura Morales Lara. Ecoexergy in the context of environmental sciences[J]. AIMS Environmental Science, 2023, 10(4): 516-528. doi: 10.3934/environsci.2023029

    Related Papers:

  • Nowadays, it is possible to assert that the causality of environmental problems entails a complex social, economic, cultural and political background; faced with such a situation, it is essential to have an operational science that considers the human factor that is in constant interaction with the environment (socio-ecological systems), while seeking sustainable development. Because of that, it became necessary to join different disciplines in a construct called Environmental Sciences, whose main objective is to study and solve problems related to human-environment interactions.

    Endorsing the concept of exergy to an interdisciplinary science implies understanding how society satisfies its needs with the natural resources provided by the various ecosystems and how they sustain demand in the man-environment interaction cycle, starting from the development of structural and functional attributes in a dynamic flow of matter and energy. This can be addressed with the first and second laws of thermodynamics by allowing the use of holistic indicators in the Environmental Sciences; one such indicator is ecoexergy, which describes the state of an ecosystem based on the biomass content and genetic information. Thus, this work presents an outline of the incursion of exergy in the context of environmental sciences, which implies that the ecosystem is an open system whose behavior adheres to the laws of thermodynamics.



    加载中


    [1] Coscieme L, Pulselli FM, Jørgensen SE, et al. (2013) Thermodynamics-based categorization of ecosystems in a socio-ecological context. Ecol Model 258: 1–8. http://dx.doi.org/10.1016/j.ecolmodel.2013.02.031. doi: 10.1016/j.ecolmodel.2013.02.031
    [2] Harte J, Brush M, Newman EA, et al. (2022) An equation of state unifies diversity, productivity, abundance and biomass. Commun Biol 5: 874. https://doi.org/10.1038/s42003-022-03817-8 doi: 10.1038/s42003-022-03817-8
    [3] Pelorosso R, Gobattoni F, Leone A (2017) The low-entropy city: A thermodynamic approach to reconnect urban systems with nature. Landscape Urban Plan 168: 22–30. http://doi:10.1016/j.landurbplan.2017.10. doi: 10.1016/j.landurbplan.2017.10
    [4] Nielsen S N, Jørgensen S E (2015) Sustainability analysis of a society based on exergy studies - a case study of the island of Samsø (Denmark). J Clean Prod 96: 12–29. http://dx.doi.org/10.1016/j.jclepro.2014.08.035. doi: 10.1016/j.jclepro.2014.08.035
    [5] Usman M, Hammar N (2020) Dynamic relationship between technological innovations, financial development, renewable energy, and ecological footprint: fresh insights based on the STIRPAT model for Asia Pacific Economic Cooperation countries. Environ Sci Pollut Res 28: 15519–15536. https://doi:10.1007/s11356-020-11640-z doi: 10.1007/s11356-020-11640-z
    [6] Somerwill L, Wehn U (2022) How to measure the impact of citizen science on environmental attitudes, behaviour and knowledge? A review of state-of-the-art approaches. Environ Sci Eur 34. https://doi10.1186/s12302-022-00596-1
    [7] Nielsen S N, Müller F, Marques J C, et al. (2020) Thermodynamics in Ecology—An Introductory Review. Entropy 22:8. https://doi:10.3390/e22080820 doi: 10.3390/e22080820
    [8] Cook J, Pawar S, Endres R G (2021) Thermodynamic constraints on the assembly and diversity of microbial ecosystems are different near to and far from equilibrium. PLoS Comput Biol 17: 1–21. doi: 10.1371/journal.pcbi.1009643 doi: 10.1371/journal.pcbi.1009643
    [9] Buonocore E, Picone F, Donnarumma L, et al. (2019) Modeling matter and energy flows in marine ecosystems using emergy and eco-exergy methods to account for natural capital value. Ecol Model 392: 137–146. doi: 10.1016/j.ecolmodel.2018.11.018 doi: 10.1016/j.ecolmodel.2018.11.018
    [10] Chang N B, Wen D (2017) Enhanced resilience and resistance assessment with virtual ecoexergy for a subtropical lake ecosystem under the intermittent impact of hurricanes and droughts. Ecol Inform 39: 68 – 83. http://doi:10.1016/j.ecoinf.2017.03.002 doi: 10.1016/j.ecoinf.2017.03.002
    [11] Huang Y, Jin P (2017) Impact of human interventions on coastal and marine geological hazards: a review. B Eng Geol Environ 77: 1081–1090. http://doi:10.1007/s10064-017-1089-1 doi: 10.1007/s10064-017-1089-1
    [12] Morales-Jasso G (2016) La categoría "ambiente". Una reflexión epistemológica sobre su uso y su estandarización en las ciencias ambientales. Nova scientia 8: 579–613. https://www.redalyc.org/articulo.oa?id = 203349086029.
    [13] Kasperson J X, Kasperson R E (2001) Global Environmental Risk. 1st Eds. London: Routledge.
    [14] Bocco Verdinelli G (2010) Geografía y Ciencias ambientales: ¿ campos disciplinarios conexos o redundancia epistémica? Investigación ambiental. Ciencia y política pública 2: 25–31.
    [15] Rist S, Dahdouh-Guebas F (2006) Ethnosciences––A step towards the integration of scientific and indigenous forms of knowledge in the management of natural resources for the future. Environ Dev Sustain 8: 467–493. https://doi:10.1007/s10668-006-9050-7 doi: 10.1007/s10668-006-9050-7
    [16] Schneider E D, Kay J J (1994) Complexity and thermodynamics. Futures 26: 626–647. https://doi.org/10.1016/0016-3287(94)90034-5 doi: 10.1016/0016-3287(94)90034-5
    [17] Ortiz B P, Delgado R A, Gómez R F (2016) Sistemas alejados del equilibrio: un lenguaje para el diálogo transdisciplina. México, CLAVE Editorial.
    [18] Fang X, Kruse K, Lu T, et al. (2019) Nonequilibrium physics in biology. Rev Mod Phys 91: 1–72. http://doi:10.1103/revmodphys.91.045004 doi: 10.1103/revmodphys.91.045004
    [19] Sun J, Yuan X, Liu H, et al. (2021) Emergy and eco-exergy evaluation of wetland reconstruction based on ecological engineering approaches in the three Gorges Reservoir, China. Ecol Indic 122: 107278. https://doi.org/10.1016/j.ecolind.2020.107278 doi: 10.1016/j.ecolind.2020.107278
    [20] Vihervaara P, Auvinen AP, Mononen L, et al. (2017) How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring. Glob Ecol Conser 10: 43–59. https://doi.org/10.1016/j.gecco.2017.01.007 doi: 10.1016/j.gecco.2017.01.007
    [21] Silow E A, Mokry A V (2010) Exergy as a Tool for Ecosystem Health Assessment. Entropy 12:4, 902–925. https://doi:10.3390/e12040902
    [22] Agrawal A, Gopal K (2012) Measurement of Primary Productivity in Relation to Food Chain. Biomonitor Water Waste Water 1–13. https://doi.org/10.1007/978-81-322-0864-8_1
    [23] Wang C, Bi J, Fath B D (2017) Effects of abiotic factors on ecosystem health of Taihu Lake, China based on eco-exergy theory. Sci Rep 7: 1–12. https://doi:10.1038/srep42872 doi: 10.1038/srep42872
    [24] Zhang M, Yuan X, Guan D, et al. (2019) An ecological scenario prediction model for newly created wetlands caused by coal mine subsidence in the Yanzhou, China. Environ Geochem Health 42: 1991–2005. https://doi:10.1007/s10653-019-00460-x doi: 10.1007/s10653-019-00460-x
    [25] Evola G, Costanzo V, Marletta L (2018) Exergy Analysis of Energy Systems in Buildings. Buildings 8: 180. http://doi:10.3390/buildings8120180 doi: 10.3390/buildings8120180
    [26] Skene KR (2017) Thermodynamics, ecology and evolutionary biology: A bridge over troubled water or common ground? Acta Oecol 85: 116–125. https://doi:10.1016/j.actao.2017.10.010 doi: 10.1016/j.actao.2017.10.010
    [27] Vihervaara P, Franzese P P, Buonocore E (2019) Information, energy, and eco-exergy as indicators of ecosystem complexity. Ecol Model 395: 23–27. https://doi.org/10.1016/j.ecolmodel.2019.01.010 doi: 10.1016/j.ecolmodel.2019.01.010
    [28] Naeem S, Duffy J E, Zavaleta E (2012) The Functions of Biological Diversity in an Age of Extinction. Science 336: 1401–1406. https://doi:10.1126/science.1215855 doi: 10.1126/science.1215855
    [29] Jorgensen S E (2015) New method to calculate the work energy of information and organisms. Ecol Model 295: 18–20. http://dx.doi.org/10.1016/j.ecoser.2017.02.005 doi: 10.1016/j.ecoser.2017.02.005
    [30] Svirezhev Y M (2000) Thermodynamics and ecology. Ecol Model 132: 11–22. doi: 10.1016/s0304-3800(00)00301-x doi: 10.1016/s0304-3800(00)00301-x
    [31] Michaelian K (2005) Thermodynamic stability of ecosystems. J Theor Biol 237: 323–335. https://doi.org/10.1016/j.jtbi.2005.04.019 doi: 10.1016/j.jtbi.2005.04.019
    [32] Fath B D, Jørgensen S E, Patten B C, et al. (2004) Ecosystem growth and development. Biosystems 77: 213–228. http://doi:10.1016/j.biosystems.2004.06.001 doi: 10.1016/j.biosystems.2004.06.001
    [33] Branscomb E, Russell M J (2013) Turnstiles and bifurcators: The disequilibrium converting engines that put metabolism on the road. Biochimica et Biophysica Acta (BBA) – Bioener 1827: 62–78. https://doi.org/10.1016/j.bbabio.2012.10.003 doi: 10.1016/j.bbabio.2012.10.003
    [34] Shugart HH, Saatchi S, Hall FG (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res 115: 1–16. https://doi.org/10.1029/2009JG000993 doi: 10.1029/2009JG000993
    [35] Kovacs E, Hoaghia MA, Senila L, et al. (2020) Sustainability Problematization and Modeling Opportunities. Sustainability 12: 10046. https://doi.org/10.3390/su122310046 doi: 10.3390/su122310046
    [36] Ayres RU (1998) Eco-thermodynamics: economics and the second law. Ecol Econ 26: 2,189–209. https://doi.org/10.1016/s0921-8009(97)00101-8 doi: 10.1016/s0921-8009(97)00101-8
    [37] Michalakakis C, Fouillou J, Lupton RC, et al. (2021) Calculating the chemical exergy of materials. J Ind Ecol 25: 274–287. https://doi.org/doi:10.1111/jiec.13120
    [38] Dincer I (2002) The role of exergy in energy policy making. Energ Policy 30: 137–149. https://doi.org/10.1016/s0301-4215(01)00079-9 doi: 10.1016/s0301-4215(01)00079-9
    [39] Sheng HX, Xu H, Zhang L, et al. (2019) Ecosystem intrinsic value and its application in decision-making foar sustainable development. J Nat Conserv https://doi.org/10.1016/j.jnc.2019.01.008
    [40] Jørgensen S E, Nielsen S N, Mejer H (1995) Emergy, environ, exergy and ecological modelling. Ecol Model 77: 2–3, 99–109. https://doi.org/10.1016/0304-3800(93)e0080-m doi: 10.1016/0304-3800(93)e0080-m
    [41] Dincer I, Rosen MA (2005) Thermodynamic aspects of renewables and sustainable development. Renew Sust Energ Rev 9: 169–189. http://doi:10.1016/j.rser.2004.02.002 doi: 10.1016/j.rser.2004.02.002
    [42] Hooper D U, Chapin F S, Ewel J J, et al. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75: 3–35. https://doi.org/10.1890/04-0922 doi: 10.1890/04-0922
    [43] Rosen MA (2021) Exergy Analysis as a Tool for Addressing Climate Change. EUR J SUSTAIN DEV RE 5: 2–10. https://doi.org/10.21601/ejosdr/9346 doi: 10.21601/ejosdr/9346
    [44] Jørgensen S E (2010) Ecosystem services, sustainability and thermodynamic indicators. Ecol Complex 7:3, 311–313. https://doi:10.1016/j.ecocom.2009.12.003
    [45] Ulgiati S, Zucaro A, Franzese P P (2011) Shared wealth or nobody's land? The worth of natural capital and ecosystem services. Ecol Econ 70: 778–787. https://doi.org/10.1016/j.ecolecon.2010.11.015 doi: 10.1016/j.ecolecon.2010.11.015
    [46] Enger ED, Smith B (2001) Environmental Science. México, McGraw-Hill Interamericana.
    [47] Canning AD, Death RG (2019) Ecosystem Health Indicators—Freshwater Environments. Encyclopedia Ecol 1: 46–60. https://doi.org/10.1016/B978-0-12-409548 doi: 10.1016/B978-0-12-409548
    [48] Toussaint O, Schneider E D (1998) The thermodynamics and evolution of complexity in biological systems. Comp Biochem Phys A: Mol Integr Physiol 120: 3–9. https://doi.org/10.1016/s1095-6433(98)10002-8 doi: 10.1016/s1095-6433(98)10002-8
    [49] Darbellay F (2015) Rethinking inter- and transdisciplinarity: undisciplined knowledge and the emergence of a new thought style. Futures 65: 163–174. https://doi.org/10.1016/j.futures.2014.10.009 doi: 10.1016/j.futures.2014.10.009
    [50] Puliafito S E, Puliafito J L, Grand M C (2008) Modeling population dynamics and economic growth as competing species: An application to CO2 global emissions. Ecol Econ 65: 602–615. https://doi.org/10.1016/j.ecolecon.2007.08.010 doi: 10.1016/j.ecolecon.2007.08.010
    [51] Dewulf J, Van langenhove H, Muys B, et al. (2007) Exergy: Its Potential and Limitations in Environmental Science and Technology. Environ Sci Technol 42: 2221–2232. http://doi:10.1021/es071719a doi: 10.1021/es071719a
    [52] Sciubba E, Zullo F (2011) Exergy-Based Population Dynamics A Thermodynamic View of the Sustainability Concept. J Ind Ecol 5: 172–184. https://doi:10.1111/j.1530-9290.2010.00309.x doi: 10.1111/j.1530-9290.2010.00309.x
    [53] Marchi M, Jørgensen S E, Bécares E, et al. (2012) Effects of eutrophication and exotic crayfish on health status of two Spanish lakes: a joint application of ecological indicators. Ecol Indic 20: 92–100. http://doi:10.1016/j.ecolind.2012.02.005 doi: 10.1016/j.ecolind.2012.02.005
    [54] Elsawah S, Piercec SA, Hamilton SH, et al. (2017) An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environ Modell Softw 93: 127–145. http://dx.doi.org/10.1016/j.envsoft.2017.03.001 doi: 10.1016/j.envsoft.2017.03.001
    [55] Pickett S T A, Cadenasso M L, Grove J M, et al. (2011) Urban ecological systems: Scientific foundations and a decade of progress. J Environ Manage 92: 331–362. https://doi:10.1016/j.jenvman.2010.08.022 doi: 10.1016/j.jenvman.2010.08.022
    [56] Grimm N B, Faeth S H, Golubiewski N E, et al. (2008) Global Change and the Ecology of Cities. Science 319: 756–760. http://dx.doi.org/10.1126/science.1150195 doi: 10.1126/science.1150195
    [57] Burkhard B, Kroll F, Nedkov S, et al. (2012) Mapping ecosystem service supply, demand and budgets. Ecol Indic 21: 17–29. https://doi.org/:10.1016/j.ecolind.2011.06.019. doi: 10.1016/j.ecolind.2011.06.019
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(980) PDF downloads(82) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog