Research article Special Issues

Floating cage aquaculture production in Indonesia: Assessment of opportunities and challenges in Lake Maninjau

  • Received: 08 October 2021 Revised: 18 December 2021 Accepted: 22 December 2021 Published: 18 January 2022
  • Aquaculture in floating cages in Lake Maninjau has recorded significant growth, even as the largest contributor to total annual aquacultural production in West Sumatra Province. In this study, we assessed the output of floating net cages in Lake Maninjau, Indonesia. We analyzed the characteristics of fish farming, fish fry, feed supply, and production, and the challenges and opportunities for increasing aquacultural production in the future. We used purposive sampling in this study with an interview questionnaire to obtain information from 80 fish-cultivating households in Lake Maninjau. We then used descriptive statistical methods of data analysis. The results showed that in 2018, there were 17596 floating net cages. The majority (n = 33, 41.25%) of fish farmers have 20 to 40 floating net cages per household, and 67.5% (n = 54) are used for tilapia cultivation. We recorded that 77.5% (n = 62) of fingerlings were sourced from private hatcheries. Six companies supply commercial feed pellets in an amount of 2000 tons per month for aquaculture activities. Japfa Comfeed Indonesia Ltd. provides 35% of the feed. The fish species cultivated were Nile tilapia, common carp, giant gourami, Clarias catfish, and pangasius catfish, with gross yields (kg/m3/cycle) of 12, 11.5, 10.4, 7.88, and 8.89, respectively. Fish farmers face challenging conditions: poor water quality, mass mortality of tilapia, high fish feed prices and low fish sale prices, and noncash payments. We recommend ensuring the development of floating net cages in Lake Maninjau for a more sustainable future. Therefore, it is necessary to operate as many as 6000 nets to meet guidelines for carrying capacity and cultivation based on the Regional Regulation of Agam Regency Number 5 of 2014 concerning the management of Maninjau Lake, which is accessible proportionally by eight villages. Giant gourami is prioritized for cultivation because it is resistant to poor water quality and high market prices.

    Citation: Junaidi, Hafrijal Syandri, Azrita, Abdullah Munzir. Floating cage aquaculture production in Indonesia: Assessment of opportunities and challenges in Lake Maninjau[J]. AIMS Environmental Science, 2022, 9(1): 1-15. doi: 10.3934/environsci.2022001

    Related Papers:

  • Aquaculture in floating cages in Lake Maninjau has recorded significant growth, even as the largest contributor to total annual aquacultural production in West Sumatra Province. In this study, we assessed the output of floating net cages in Lake Maninjau, Indonesia. We analyzed the characteristics of fish farming, fish fry, feed supply, and production, and the challenges and opportunities for increasing aquacultural production in the future. We used purposive sampling in this study with an interview questionnaire to obtain information from 80 fish-cultivating households in Lake Maninjau. We then used descriptive statistical methods of data analysis. The results showed that in 2018, there were 17596 floating net cages. The majority (n = 33, 41.25%) of fish farmers have 20 to 40 floating net cages per household, and 67.5% (n = 54) are used for tilapia cultivation. We recorded that 77.5% (n = 62) of fingerlings were sourced from private hatcheries. Six companies supply commercial feed pellets in an amount of 2000 tons per month for aquaculture activities. Japfa Comfeed Indonesia Ltd. provides 35% of the feed. The fish species cultivated were Nile tilapia, common carp, giant gourami, Clarias catfish, and pangasius catfish, with gross yields (kg/m3/cycle) of 12, 11.5, 10.4, 7.88, and 8.89, respectively. Fish farmers face challenging conditions: poor water quality, mass mortality of tilapia, high fish feed prices and low fish sale prices, and noncash payments. We recommend ensuring the development of floating net cages in Lake Maninjau for a more sustainable future. Therefore, it is necessary to operate as many as 6000 nets to meet guidelines for carrying capacity and cultivation based on the Regional Regulation of Agam Regency Number 5 of 2014 concerning the management of Maninjau Lake, which is accessible proportionally by eight villages. Giant gourami is prioritized for cultivation because it is resistant to poor water quality and high market prices.



    加载中


    [1] FAO (2018) The state of world fisheries and aquaculture 2018: contributing to food security and nutrition for all, Rome.
    [2] Tran N, Rodriguez UP, Chan CY, et al. (2017) Indonesian aquaculture futures: An analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the Asia Fish model. Mar Policy 79: 25-32. https://doi.org/10.1016/j.marpol.2017.02.002 doi: 10.1016/j.marpol.2017.02.002
    [3] Senff P, Partelow S, Indriana LF, et al. (2018) Improving pond aquaculture production on Lombok, Indonesia. Aquaculture 497: 64-73. https://doi.org/10.1016/j.aquaculture.2018.07.027 doi: 10.1016/j.aquaculture.2018.07.027
    [4] Pouil S, Samsudin R, Slembrouck J, et al. (2019) Nutrient budgets in a small-scale freshwater fish pond system in Indonesia. Aquaculture 504: 267-274. https://doi.org/10.1016/j.aquaculture.2019.01.067 doi: 10.1016/j.aquaculture.2019.01.067
    [5] CDSI, Central Data Statistic Indonesia (2016) Ministry of Marine and Fisheries Republic of Indonesia. CSI. Center for data, statistics and information (CSI). Marine and Fisheries in Figures. Ministry of Marine and Fisheries Republic of Indonesia. 2018. https://kkp.go.id/wp-content/uploads/2018/01/KKP-Dirjen-PDSPKP-FMB-Kominfo-19-Januari-2018.pdf
    [6] Syandri H, Azrita, Junaidi, et al. (2015) Social Status of the fish-farmers of floating-net-cages in Lake Maninjau, Indonesia. J Aquac Res Dev 7: 1.
    [7] Rimmer MA, Sugama, Rakhmawati K, et al. (2013) A review and SWOT analysis of aquaculture development in Indonesia. Rev Aquac 5: 255-279. https://doi.org/10.1111/raq.12017 doi: 10.1111/raq.12017
    [8] Henriksson PJG, Tran N, Mohan CV, et al. (2017) Indonesian aquaculture futures evaluating environmental and socio-economic potentials and limitations. J Clean Prod 162: 1482-1490. https://doi.org/10.1016/j.jclepro.2017.06.133 doi: 10.1016/j.jclepro.2017.06.133
    [9] Syandri H, Azrita, Mardiah A, et al. (2018) Nitrogen and phosphorus waste production from different fish species cultured at floating net cages in Lake Maninjau, Indonesia. Asian J Sci Res 11: 287-294. https://doi.org/10.3923/ajsr.2018.287.294 doi: 10.3923/ajsr.2018.287.294
    [10] Syandri H, Azrita, Sumiarsih E, et al. (2021) Nutrient loading and farm characteristics of giant gourami fish aquaculture systems in Lake Maninjau, Indonesia: Basic knowledge of production performance. F1000Research, 10: 378. https://doi.org/10.12688/f1000research.52613.1.
    [11] Syandri H, Azrita, Niagara, et al. (2016) Trophic Status and load capacity of water pollution waste fish culture with floating net cages in Maninjau Lake, Indonesia. Eco Env Cons 22: 469-476. http://www.envirobiotechjournals.com/article_abstract.php?aid = 6717&iid = 207&jid = 3
    [12] Ahmed N, Thompson S (2019) The blue dimensions of aquaculture: A global synthesis. Sci. Total Environ 652: 851-861. https://doi.org/10.1016/j.scitotenv.2018.10.163. doi: 10.1016/j.scitotenv.2018.10.163
    [13] Aura CM, Musa S, Yongo E, et al. (2017) Integration of mapping and socio-economic status of cage culture: Toward balancing lake-use and culture fisheries in Lake Victoria Kenya. Aquac Res 49: 532-545. https://doi.org/10.1111/are.13484 doi: 10.1111/are.13484
    [14] CSA, Central Statistics Agency (2018) Agam District, West Sumatera Province, Indonesia. https://agamkab.bps.go.id/
    [15] Syandri H, Junaidi, Azrita, et al. 2014. State of aquatic resources Maninjau Lake West Sumatra Province, Indonesia. J Ecol Environ Sci 1: 109-114.
    [16] Central Bureau of Statistics (CBS) of Agam Regency. (2017). Agam Regency in Figures 2017.
    [17] Opiyo MA, Marijani E, Muendo P, et al. (2018) A review of aquaculture production and health management practices of farmed fish in Kenya. Int J Vet Sci Med 6: 141-148. https://doi.org/10.1016/j.ijvsm.2018.07.001 doi: 10.1016/j.ijvsm.2018.07.001
    [18] Mbowa S, Odokonyero T, Munyaho AT, et al. (2017) Harnessing floating cage technology to increase fish production in Uganda, Research Series No. 138.
    [19] Hasimuna OJ, Maulu S, Monde C, et al. (2019) Cage aquaculture production in Zambia: Assessment of opportunities and challenges on Lake Kariba, Siavonga district. Egypt. J Aquat Res 45: 281-285. https://doi.org/10.1016/j.ejar.2019.06.007
    [20] Thongprajukaew K, Kovitvadhi S, Kovitvadhi U, et al. (2017) Effects of feeding frequency on growth performance and digestive enzyme activity of sex-reversed Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). Agric Nat Resources 51: 292-298. https://doi.org/10.1016/j.anres.2017.04.005 doi: 10.1016/j.anres.2017.04.005
    [21] Prem R, Tewari VK (2020) Development of human-powered fish feeding machine for freshwater aquaculture farms of developing countries. Aquac Eng 88: 102028. https://doi.org/10.1016/j.aquaeng.2019.102028 doi: 10.1016/j.aquaeng.2019.102028
    [22] Syandri H, Azrita, Mardiah A, et al. (2020) Water Quality Status and Pollution Waste Load from Floating Net Cages at Maninjau Lake, West Sumatera Indonesia. IOP Conf Ser Earth Environ Sci 430: 01203. https://doi.org/10.1088/1755-1315/430/1/012031 doi: 10.1088/1755-1315/430/1/012031
    [23] Ji B, Qin H, Guo S, et al. (2018) Bacterial communities of four adjacent fresh lakes at different trophic status. Ecotoxicol Environ Saf 157: 388-394. https://doi.org/10.1016/j.ecoenv.2018.03.086 doi: 10.1016/j.ecoenv.2018.03.086
    [24] Burgos MJG, Romero JL, Pulido RP, et al. (2018) Analysis of potential risks from the bacterial communities associated with air-contact surfaces from tilapia (Oreochromis niloticus) fish farming. Environ Res 160: 385-390. https://doi.org/10.1016/j.envres.2017.10.021 doi: 10.1016/j.envres.2017.10.021
    [25] Zhao M, Xie S, Zhu X, et al. (2006) Effect of dietary cyanobacteria on growth and accumulation of microcystins in Nile tilapia (Oreochromis niloticus). Aquaculture 261: 960-966. https://doi.org/10.1016/j.aquaculture.2006.08.019 doi: 10.1016/j.aquaculture.2006.08.019
    [26] de Oliveira TF, Queiroz GA, Teixeira JP, et al. (2018) Recurrent Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus) treated with florfenicol. Aquaculture 493: 51-60. https://doi.org/10.1016/j.aquaculture.2018.04.037 doi: 10.1016/j.aquaculture.2018.04.037
    [27] Nicholson P, Mon-on N, Jaemwimol P, et al. (2019) Co-infection of tilapia lake virus and Aeromonas hydrophila synergistically increased mortality and worsened the disease severity in tilapia (Oreochromis spp.). Aquaculture 520: 734746. https://doi.org/10.1016/j.aquaculture.2019.734746
    [28] Hounmanou YMG, Mdegela RH, Dougnon TV, et al. (2018) Tilapia lake virus threatens tilapiines farming and food security: Socio-economic challenges and preventive measures in Sub- Saharan Africa. Aquaculture 493: 123-129. https://doi.org/10.1016/j.aquaculture.2018.05.001 doi: 10.1016/j.aquaculture.2018.05.001
    [29] Ferguson HW, Kabuusu R, Beltran S, et al. (2014) Syncytial hepatitis of farmed tilapia, Oreochromis niloticus (L.): a case report. J Fish Dis 37: 583-589. https://doi.org/10.1111/jfd.12142 doi: 10.1111/jfd.12142
    [30] Tsofack JEK, Zamostiano R, Watted S, et al. (2017) Detection of Tilapia Lake Virus in Clinical Samples by Culturing and Nested Reverse Transcription-PCR. J Clin Microbiol 55: 759-767. https://doi.org/10.1128/JCM.01808-16 doi: 10.1128/JCM.01808-16
    [31] Amal MNA, Koh CB, Nurliyana M, et al. (2018) A case of natural co-infection of Tilapia Lake Virus and Aeromonas veronii in a Malaysian red hybrid tilapia (Oreochromis niloticus×O. mossambicus) farm experiencing high mortality. Aquaculture 485: 12-16. https://doi.org/10.1016/j.aquaculture.2017.11.019 doi: 10.1016/j.aquaculture.2017.11.019
    [32] Mugimba KK, Chengula, AA Wamala S, et al. (2018) Detection of tilapia lake virus (TiLV) infection by PCR in farmed and wild Nile tilapia (Oreochromis niloticus) from Lake Victoria. J Fish Dis https://doi.org/10.1111/jfd.12790
    [33] Ali H, Rahman MM, Murshed-e-Jaha K, et al. (2018) Production economics of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) farming under polyculture system in Bangladesh. Aquaculture 491: 281-390. https://doi.org/10.1016/j.aquaculture.2017.12.004 doi: 10.1016/j.aquaculture.2017.12.004
    [34] Verdegem MCJ, Bosma RH (2009) Water withdrawal for brackish and inland aquaculture and options to produce more fish in ponds with present water use. Water Policy 11: 52-68 Supplement 1. https://doi.org/10.2166/wp.2009.003 doi: 10.2166/wp.2009.003
    [35] David GS, Carvalho ED, Lemos D, et al. (2015) Ecological carrying capacity for intensive Tilapia (Oreochromis niloticus) cage aquaculture in a large hydroelectrical reservoir in Southeastern Brazil. Aquac Eng 66: 30-40. https://doi.org/10.1016/j.aquaeng.2015.02.003 doi: 10.1016/j.aquaeng.2015.02.003
    [36] Musinguzi L, Lugya J, Rwezawula P, et al. (2019) The extent of cage aquaculture, adherence to best practices and reflections for sustainable aquaculture on African inland waters. J Great Lakes Res 45: 1340-1347. https://doi.org/10.1016/j.jglr.2019.09.011 doi: 10.1016/j.jglr.2019.09.011
    [37] Jamu D, Banda M, Njaya F, et al. (2011) Challenges to sustainable management of the lakes of Malawi. J Great Lakes Res 37: 3-14. https://doi.org/10.1016/j.jglr.2010.11.017 doi: 10.1016/j.jglr.2010.11.017
    [38] Jia P, Zhang W, Liu Q, et al. (2013) Lake fisheries in China: Challenges and opportunities. Fish Res 140: 66-72. https://doi.org/10.1016/j.fishres.2012.12.007 doi: 10.1016/j.fishres.2012.12.007
    [39] Asche F, Roll KH, Tveteras R, et al. (2009) Economic inefficiency and environmental impact: An application to aquaculture production. J Environ Econ Manage 58: 93-105. https://doi.org/10.1016/j.jeem.2008.10.003 doi: 10.1016/j.jeem.2008.10.003
    [40] Lindim C, Becker A, Grüneberg B, et al. (2015) Modelling the effects of nutrient loads reduction and testing the N and P control paradigm in a German shallow lake. Aquac Eng 82: 418-457. https://doi.org/10.1016/j.ecoleng.2015.05.009 doi: 10.1016/j.ecoleng.2015.05.009
    [41] Syandri H, Azrita, Junaidi, et al. (2017) Levels of available nitrogen-phosphorus before and after fish mass mortality in Maninjau Lake of Indonesia. J Fish Aquat Sci 12: 191-196. https://doi.org/10.3923/jfas.2017.191.196 doi: 10.3923/jfas.2017.191.196
    [42] Du H, Chen Z, Mao G, et al. (2019) Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecol Indic 102: 686-692. https://doi.org/10.1016/j.ecolind.2019.03.032 doi: 10.1016/j.ecolind.2019.03.032
    [43] Ni Z, Wu X, Li L, et al. (2017) Pollution control and in situ bioremediation for lake aquaculture using an ecological dam. J Clean Prod 172: 2256-2265. https://doi.org/10.1016/j.jclepro.2017.11.185 doi: 10.1016/j.jclepro.2017.11.185
    [44] Young N, Brattland C, Digiovanni, et al. (2019) Limitations to growth: Social-ecological challenges to aquaculture development in five wealthy nations. Mar Policy 104: 216-224. https://doi.org/10.1016/j.marpol.2019.02.022 doi: 10.1016/j.marpol.2019.02.022
    [45] Holden JS, Collicutt B, Covernton G, et al. (2019) Synergies on the coast: Challenges facing shellfish aquaculture development on the central and north coast of British Columbia. Mar Policy 101: 108-117. https://doi.org/10.1016/j.marpol.2019.01.001. doi: 10.1016/j.marpol.2019.01.001
    [46] Weitzman J (2019) Applying the ecosystem services concept to aquaculture: A review of approaches, definitions, and uses. Ecosyst Serv 35: 194-206. https://doi.org/10.1016/j.ecoser.2018.12.009. doi: 10.1016/j.ecoser.2018.12.009
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4472) PDF downloads(371) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog