Citation: Pietro Bonifaci, Sergio Copiello, Edda Donati. Budget constraints in critical scenarios: A position paper on the challenges to improving building performance[J]. AIMS Energy, 2024, 12(4): 751-760. doi: 10.3934/energy.2024035
[1] | Preiser WFE, Hardy AE, Schramm U (Eds.) (2018) Building Performance Evaluation. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-56862-1 |
[2] | Preiser WFE (2014) Architecture Beyond Criticism. London, Routledge. https://doi.org/10.4324/9781315740652 |
[3] | Economidou M, Todeschi V, Bertoldi P, et al. (2020) Review of 50 years of EU energy efficiency policies for buildings. Energy Build 225: 110322. https://doi.org/10.1016/j.enbuild.2020.110322 doi: 10.1016/j.enbuild.2020.110322 |
[4] | Clinton J, Geller H, Hirst E (1986) Review of government and utility energy conservation programs. Annu Rev Energy 11: 95–142. https://doi.org/10.1146/annurev.eg.11.110186.000523 doi: 10.1146/annurev.eg.11.110186.000523 |
[5] | Copiello S (2017) Building energy efficiency: A research branch made of paradoxes. Renewable Sustainable Energy Rev 69: 1064–1076. https://doi.org/10.1016/j.rser.2016.09.094 doi: 10.1016/j.rser.2016.09.094 |
[6] | Jä ger-Waldau A, Kougias I, Taylor N, et al. (2020) How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030. Renewable Sustainable Energy Rev 126: 109836. https://doi.org/10.1016/j.rser.2020.109836 doi: 10.1016/j.rser.2020.109836 |
[7] | Copiello S, Grillenzoni C (2020) Economic development and climate change. Which is the cause and which the effect? Energy Rep 6: 49–59. https://doi.org/10.1016/j.egyr.2020.08.024 doi: 10.1016/j.egyr.2020.08.024 |
[8] | Copiello S, Grillenzoni C (2021) Robust space–time modeling of solar photovoltaic deployment. Energy Rep 7: 657–676. https://doi.org/10.1016/j.egyr.2021.07.087 doi: 10.1016/j.egyr.2021.07.087 |
[9] | Moriarty P, Honnery D (2018) Energy policy and economics under climate change. AIMS Energy 6: 272–290. https://doi.org/10.3934/energy.2018.2.272 doi: 10.3934/energy.2018.2.272 |
[10] | Ndiaye K, Ginestet S, Cyr M (2018) Thermal energy storage based on cementitious materials: A review. AIMS Energy 6: 97–120. https://doi.org/10.3934/energy.2018.1.97 doi: 10.3934/energy.2018.1.97 |
[11] | Zhu N, Ma Z, Wang S (2009) Dynamic characteristics and energy performance of buildings using phase change materials: A review. Energy Convers Manag 50: 3169–3181. https://doi.org/10.1016/j.enconman.2009.08.019 doi: 10.1016/j.enconman.2009.08.019 |
[12] | Omer AM (2008) Renewable building energy systems and passive human comfort solutions. Renewable Sustainable Energy Rev 12: 1562–1587. https://doi.org/10.1016/j.rser.2006.07.010 doi: 10.1016/j.rser.2006.07.010 |
[13] | Baglivo C, Albanese PM, Congedo PM (2024) Relationship between shape and energy performance of buildings under long-term climate change. J Building Eng 84: 108544. https://doi.org/10.1016/j.jobe.2024.108544 doi: 10.1016/j.jobe.2024.108544 |
[14] | Eleftheriadis S, Mumovic D, Greening P (2017) Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renewable Sustainable Energy Rev 67: 811–825. https://doi.org/10.1016/j.rser.2016.09.028 doi: 10.1016/j.rser.2016.09.028 |
[15] | Pohoryles DA, Maduta C, Bournas DA, et al. (2020) Energy performance of existing residential buildings in Europe: A novel approach combining energy with seismic retrofitting. Energy Build 223: 110024. https://doi.org/10.1016/j.enbuild.2020.110024 doi: 10.1016/j.enbuild.2020.110024 |
[16] | Ries R, Bilec MM, Gokhan NM, et al. (2006) The economic benefits of green buildings: A Comprehensive case study. Eng Econ 51: 259–295. https://doi.org/10.1080/00137910600865469 doi: 10.1080/00137910600865469 |
[17] | Omer AM (2008) Energy, environment and sustainable development. Renewable Sustainable Energy Rev 12: 2265–2300. https://doi.org/10.1016/j.rser.2007.05.001 doi: 10.1016/j.rser.2007.05.001 |
[18] | Cheong KH, Teo YH, Koh JM, et al. (2020) A simulation-aided approach in improving thermal-visual comfort and power efficiency in buildings. J Building Eng 27: 100936. https://doi.org/10.1016/j.jobe.2019.100936 doi: 10.1016/j.jobe.2019.100936 |
[19] | Samuelson HW, Baniassadi A, Gonzalez PI (2020) Beyond energy savings: Investigating the co-benefits of heat resilient architecture. Energy 204: 117886. https://doi.org/10.1016/j.energy.2020.117886 doi: 10.1016/j.energy.2020.117886 |
[20] | Copiello S (2021) Economic viability of building energy efficiency measures: A review on the discount rate. AIMS Energy 9: 257–285. https://doi.org/10.3934/energy.2021014 doi: 10.3934/energy.2021014 |
[21] | Copiello S, Gabrielli L, Bonifaci P (2017) Evaluation of energy retrofit in buildings under conditions of uncertainty: The prominence of the discount rate. Energy 137: 104–117. https://doi.org/10.1016/j.energy.2017.06.159 doi: 10.1016/j.energy.2017.06.159 |
[22] | Copiello S, Gabrielli L (2017) Analysis of building energy consumption through panel data: The role played by the economic drivers. Energy Build 145: 130–143. https://doi.org/10.1016/j.enbuild.2017.03.053 doi: 10.1016/j.enbuild.2017.03.053 |
[23] | Dolores L, Macchiaroli M, De Mare G (2022) Financial impacts of the energy transition in housing. Sustainability 14: 4876. https://doi.org/10.3390/su14094876 doi: 10.3390/su14094876 |
[24] | Copiello S (2024) Building energy efficiency: New challenges for incentive policies and sustainable business models. AIMS Energy 12: 481–483. https://doi.org/10.3934/energy.2024022 doi: 10.3934/energy.2024022 |
[25] | Donati E, Copiello S (2023) The one-stop shop business model for improving building energy efficiency: Analysis and applications. In: Gervasi O, Murgante B, Rocha AMAC, et al. (Eds.), Computational Science and Its Applications—ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, Cham, Springer, 422–439. https://doi.org/10.1007/978-3-031-37111-0_30 |
[26] | Copiello S, Donati E, Bonifaci P (2024) Energy efficiency practices: A case study analysis of innovative business models in buildings. Energy Build 313: 114223. https://doi.org/10.1016/j.enbuild.2024.114223 doi: 10.1016/j.enbuild.2024.114223 |
[27] | Lucas E, Marthe P, Stephane G, et al. (2023) European market structure for integrated home renovation support service: Scope and comparison of the different kind of one stop shops. AIMS Energy 11: 846–877. https://doi.org/10.3934/energy.2023041 doi: 10.3934/energy.2023041 |
[28] | Amstalden RW, Kost M, Nathani C, et al. (2007) Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations. Energy Policy 35: 1819–1829. https://doi.org/10.1016/j.enpol.2006.05.018 doi: 10.1016/j.enpol.2006.05.018 |
[29] | Jakob M (2006) Marginal costs and co-benefits of energy efficiency investments. Energy Policy 34: 172–187. https://doi.org/10.1016/j.enpol.2004.08.039 doi: 10.1016/j.enpol.2004.08.039 |
[30] | Dwaikat LN, Ali KN (2016) Green buildings cost premium: A review of empirical evidence. Energy Build 110: 396–403. https://doi.org/10.1016/j.enbuild.2015.11.021 doi: 10.1016/j.enbuild.2015.11.021 |
[31] | Dell'Anna F, Bottero M (2021) Green premium in buildings: Evidence from the real estate market of Singapore. J Clean Prod 286: 125327. https://doi.org/10.1016/j.jclepro.2020.125327 doi: 10.1016/j.jclepro.2020.125327 |
[32] | Copiello S, Donati E (2021) Is investing in energy efficiency worth it? Evidence for substantial price premiums but limited profitability in the housing sector. Energy Build 251: 111371. https://doi.org/10.1016/j.enbuild.2021.111371 doi: 10.1016/j.enbuild.2021.111371 |
[33] | Copiello S (2016) Economic implications of the energy issue: Evidence for a positive non-linear relation between embodied energy and construction cost. Energy Build 123: 59–70. https://doi.org/10.1016/j.enbuild.2016.04.054 doi: 10.1016/j.enbuild.2016.04.054 |
[34] | Copiello S, Gabrielli L, Micelli E (2021) Building industry and energy efficiency: A review of three major issues at Stake. In: Gervasi O, Murgante B, Misra S, et al. (Eds.), Computational Science and Its Applications—ICCSA 2021. Lecture Notes in Computer Science, Cham, Springer, 226–240. https://doi.org/10.1007/978-3-030-86979-3_17 |
[35] | Jiang Y, Zhao D, Xu Z, et al. (2024) Costs and pricing of green buildings. In: Zuo J, Shen L, Chang R (Eds.), Circular Economy for Buildings and Infrastructure, Cham, Springer, 181–191. https://doi.org/10.1007/978-3-031-56241-9_12 |
[36] | Zalejska‐Jonsson A, Lind H, Hintze S (2012) Low‐energy versus conventional residential buildings: cost and profit. J Eur Real Estate Res 5: 211–228. https://doi.org/10.1108/17539261211282064 doi: 10.1108/17539261211282064 |
[37] | Kumbaroğlu G, Madlener R (2012) Evaluation of economically optimal retrofit investment options for energy savings in buildings. Energy Build 49: 327–334. https://doi.org/10.1016/j.enbuild.2012.02.022 doi: 10.1016/j.enbuild.2012.02.022 |
[38] | Copiello S, Bonifaci P (2015) Green housing: Toward a new energy efficiency paradox? Cities 49: 76–87. https://doi.org/10.1016/j.cities.2015.07.006 doi: 10.1016/j.cities.2015.07.006 |
[39] | Gilson Dranka G, Cunha J, Donizetti de Lima J, et al. (2020) Economic evaluation methodologies for renewable energy projects. AIMS Energy 8: 339–364. https://doi.org/10.3934/energy.2020.2.339 doi: 10.3934/energy.2020.2.339 |
[40] | Bertoncini M, Boggio A, Dell'Anna F, et al. (2022) An application of the PROMETHEE Ⅱ method for the comparison of energy requalification strategies to design Post-Carbon Cities. AIMS Energy 10: 553–581. https://doi.org/10.3934/energy.2022028 doi: 10.3934/energy.2022028 |
[41] | Howarth RB, Andersson B (1993) Market barriers to energy efficiency. Energy Econ 15: 262–272. https://doi.org/10.1016/0140-9883(93)90016-K doi: 10.1016/0140-9883(93)90016-K |
[42] | Howarth RB, Sanstad AH (1995) Discount rates and energy efficiency. Contemp Econ Policy 13: 101–109. https://doi.org/10.1111/j.1465-7287.1995.tb00726.x doi: 10.1111/j.1465-7287.1995.tb00726.x |
[43] | Eyre N (1997) Barriers to Energy Efficiency: More than just market failure. Energy Environ 8: 25–43. https://doi.org/10.1177/0958305X9700800103 doi: 10.1177/0958305X9700800103 |
[44] | Howarth RB (2004) Discount rates and energy efficiency Gap. Encycl Energy, 817–822. https://doi.org/10.1016/B0-12-176480-X/00544-1 doi: 10.1016/B0-12-176480-X/00544-1 |
[45] | Hassett KA, Metcalf GE (1993) Energy conservation investment. Do consumers discount the future correctly? Energy Policy 21: 710–716. https://doi.org/10.1016/0301-4215(93)90294-P doi: 10.1016/0301-4215(93)90294-P |
[46] | Awerbuch S, Deehan W (1995) Do consumers discount the future correctly? A market-based valuation of residential fuel switching. Energy Policy 23: 57–69. https://doi.org/10.1016/0301-4215(95)90766-Z doi: 10.1016/0301-4215(95)90766-Z |
[47] | Lee K-H (2015) Drivers and barriers to energy efficiency management for sustainable development. Sustainable Dev 23: 16–25. https://doi.org/10.1002/sd.1567 doi: 10.1002/sd.1567 |
[48] | Tuominen P, Klobut K, Tolman A, et al. (2012) Energy savings potential in buildings and overcoming market barriers in member states of the European Union. Energy Build 51: 48–55. https://doi.org/10.1016/j.enbuild.2012.04.015 doi: 10.1016/j.enbuild.2012.04.015 |
[49] | Bichiou Y, Krarti M (2011) Optimization of envelope and HVAC systems selection for residential buildings. Energy Build 43: 3373–3382. https://doi.org/10.1016/j.enbuild.2011.08.031 doi: 10.1016/j.enbuild.2011.08.031 |
[50] | Scheib J, Pless S, Torcellini P (2014) An energy-performance-based design-build process: Strategies for procuring high-performance buildings on typical construction budgets. ACEEE Summer Study on Energy Efficiency in Buildings, 4: 306–321. |
[51] | Chen Q, Ma Q (2012) A study of the energy efficiency renovation on public housing projects. J Green Build 7: 192–212. https://doi.org/10.3992/jgb.7.1.192 doi: 10.3992/jgb.7.1.192 |
[52] | Abdallah M, El-Rayes K, Liu L (2016) Optimizing the selection of sustainability measures to minimize life-cycle cost of existing buildings. Can J Civ Eng 43: 151–163. https://doi.org/10.1139/cjce-2015-0179 doi: 10.1139/cjce-2015-0179 |
[53] | Ascione F, Bianco N, De Stasio C, et al. (2015) A new methodology for cost-optimal analysis by means of the multi-objective optimization of building energy performance. Energy Build 88: 78–90. https://doi.org/10.1016/j.enbuild.2014.11.058 doi: 10.1016/j.enbuild.2014.11.058 |
[54] | Farahani A, Wallbaum H, Dalenbä ck JO (2020) Cost-Optimal maintenance and renovation planning in multifamily buildings with annual budget constraints. J Constr Eng Manag 146. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001778 doi: 10.1061/(ASCE)CO.1943-7862.0001778 |
[55] | Farahani A, Wallbaum H, Dalenbä ck JO (2019) The importance of life-cycle based planning in maintenance and energy renovation of multifamily buildings. Sustainable Cities Soc 44: 715–725. https://doi.org/10.1016/j.scs.2018.10.033 doi: 10.1016/j.scs.2018.10.033 |
[56] | He Y, Liao N, Bi J, et al. (2019) Investment decision-making optimization of energy efficiency retrofit measures in multiple buildings under financing budgetary restraint. J Clean Prod 215: 1078–1094. https://doi.org/10.1016/j.jclepro.2019.01.119 doi: 10.1016/j.jclepro.2019.01.119 |
[57] | Augenbroe G, Castro D, Ramkrishnan K (2009) Decision model for energy performance improvements in existing buildings. J Eng, Des Technol 7: 21–36. https://doi.org/10.1108/17260530910947240 doi: 10.1108/17260530910947240 |
[58] | Jain H, Thomas A, Rajput TS (2023) A Multi-objective optimization framework for sustainable retrofit of Indian buildings. In: Saha S, Sajith AS, Sahoo DR, et al. (Eds.), Recent Advances in Materials, Mechanics and Structures. Lecture Notes in Civil Engineering. Singapore, Springer, 269: 73–83. https://doi.org/10.1007/978-981-19-3371-4_7 |
[59] | Fowlie M, Meeks R (2021) The economics of energy efficiency in developing countries. Rev Environ Econ Policy 15: 238–260. https://doi.org/10.1086/715606 doi: 10.1086/715606 |
[60] | Iwaro J, Mwasha A (2010) A review of building energy regulation and policy for energy conservation in developing countries. Energy Policy 38: 7744–7755. https://doi.org/10.1016/j.enpol.2010.08.027 doi: 10.1016/j.enpol.2010.08.027 |
[61] | Opoku R, Edwin IA, Agyarko KA (2019) Energy efficiency and cost saving opportunities in public and commercial buildings in developing countries—The case of air-conditioners in Ghana. J Clean Prod 230: 937–944. https://doi.org/10.1016/j.jclepro.2019.05.067 doi: 10.1016/j.jclepro.2019.05.067 |
[62] | Assefa S, Lee HY, Shiue FJ (2022) A building sustainability assessment system (BSAS) for least developed countries: A case of Ethiopia. Sustainable Cities Soc 87: 104238. https://doi.org/10.1016/j.scs.2022.104238 doi: 10.1016/j.scs.2022.104238 |
[63] | Roy A (2009) The 21st-Century metropolis: New geographies of theory. Reg Stud 43: 819–830. https://doi.org/10.1080/00343400701809665 doi: 10.1080/00343400701809665 |
[64] | Cohen B (2006) Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol Soc 28: 63–80. https://doi.org/10.1016/j.techsoc.2005.10.005 doi: 10.1016/j.techsoc.2005.10.005 |
[65] | McMichael AJ (2000) The urban environment and health in a world of increasing globalization: Issues for developing countries. Bull World Health Organ 78: 1117–1126. |
[66] | Gerland P, Raftery AE, Ševčíková H, et al. (2014) World population stabilization unlikely this century. Science 346: 234–237. https://doi.org/10.1126/science.1257469 doi: 10.1126/science.1257469 |
[67] | Kundzewicz ZW, Kanae S, Seneviratne SI, et al. (2014) Flood risk and climate change: Global and regional perspectives. Hydrol Sci J 59: 1–28. https://doi.org/10.1080/02626667.2013.857411 doi: 10.1080/02626667.2013.857411 |
[68] | Adelekan I, Johnson C, Manda M, et al. (2015) Disaster risk and its reduction: an agenda for urban Africa. Int Dev Plann Rev 37: 33–43. https://doi.org/10.3828/idpr.2015.4 doi: 10.3828/idpr.2015.4 |
[69] | Hinkel J, Lincke D, Vafeidis AT, et al. (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc Natl Acad Sci 111: 3292–3297. https://doi.org/10.1073/pnas.1222469111 doi: 10.1073/pnas.1222469111 |
[70] | Dhiman R, VishnuRadhan R, Eldho TI, et al. (2019) Flood risk and adaptation in Indian coastal cities: Recent scenarios. Appl Water Sci 9: 5. https://doi.org/10.1007/s13201-018-0881-9 doi: 10.1007/s13201-018-0881-9 |
[71] | Chatterjee M (2010) Slum dwellers response to flooding events in the megacities of India. Mitig Adapt Strateg Glob Chang 15: 337–353. https://doi.org/10.1007/s11027-010-9221-6 doi: 10.1007/s11027-010-9221-6 |
[72] | Silva C, Pino G (2024) Financial inclusion and roof quality: Satellite evidence from Chilean slums. World Dev 180: 106652. https://doi.org/10.1016/j.worlddev.2024.106652 doi: 10.1016/j.worlddev.2024.106652 |
[73] | Leichenko R, Silva JA (2014) Climate change and poverty: vulnerability, impacts, and alleviation strategies. WIREs Clim Change 5: 539–556. https://doi.org/10.1002/wcc.287 doi: 10.1002/wcc.287 |