Review

A review on the classifications and applications of solar photovoltaic technology

  • Received: 28 May 2023 Revised: 18 September 2023 Accepted: 23 October 2023 Published: 13 November 2023
  • Our aim of this work is to present a review of solar photovoltaic (PV) systems and technologies. The principle of functioning of a PV system and its major components are first discussed. The types of PV systems are described regarding the connections and characteristics of each type. PV technology generations are demonstrated, including the types, properties, advantages and barriers of each generation. It was revealed that the first generation is the oldest among the three PV generations and the most commonly utilized due to its high efficiency in spite the high cost and complex fabrication process of silicon; the second generation is characterized by its low efficiency and cost and flexibility compared to other generations; and the third generation is not commercially proven yet in spite the fact that it has the highest efficiency and relatively low cost, its raw materials are easy to find and its fabrication process is easier than the other generations. It was shown that the target of all the conducted studies is to study the PV technology to enhance its performance and optimize the benefit from solar energy by reducing conventional energy dependence, mitigating CO2 emissions and promote the economic performance.

    Citation: Amal Herez, Hassan Jaber, Hicham El Hage, Thierry Lemenand, Mohamad Ramadan, Mahmoud Khaled. A review on the classifications and applications of solar photovoltaic technology[J]. AIMS Energy, 2023, 11(6): 1102-1130. doi: 10.3934/energy.2023051

    Related Papers:

  • Our aim of this work is to present a review of solar photovoltaic (PV) systems and technologies. The principle of functioning of a PV system and its major components are first discussed. The types of PV systems are described regarding the connections and characteristics of each type. PV technology generations are demonstrated, including the types, properties, advantages and barriers of each generation. It was revealed that the first generation is the oldest among the three PV generations and the most commonly utilized due to its high efficiency in spite the high cost and complex fabrication process of silicon; the second generation is characterized by its low efficiency and cost and flexibility compared to other generations; and the third generation is not commercially proven yet in spite the fact that it has the highest efficiency and relatively low cost, its raw materials are easy to find and its fabrication process is easier than the other generations. It was shown that the target of all the conducted studies is to study the PV technology to enhance its performance and optimize the benefit from solar energy by reducing conventional energy dependence, mitigating CO2 emissions and promote the economic performance.



    加载中


    [1] Khaled M, Harambat F, El Hage H, et al. (2011) Spatial optimization of an underhood cooling module—Towards an innovative control approach. Appl Energy 88: 3841–3849. https://doi.org/10.1016/j.apenergy.2011.04.025 doi: 10.1016/j.apenergy.2011.04.025
    [2] Showers SO, Raji AK (2022) State-of-the-art review of fuel cell hybrid electric vehicle energy management systems. AIMS Energy 10: 458–485. https://doi.org/10.3934/ENERGY.2022023 doi: 10.3934/ENERGY.2022023
    [3] Elweddad M, Güneşer M, Yusupov Z (2022) Designing an energy management system for household consumptions with an off-grid hybrid power system. AIMS Energy 10: 801–830. https://doi.org/10.3934/ENERGY.2022036 doi: 10.3934/ENERGY.2022036
    [4] Jaber H, Ramadan M, Lemenand T, et al. (2018) Domestic thermoelectric cogeneration system optimization analysis, energy consumption, and CO2 emissions reduction. Appl Therm Eng 130: 279–295. https://doi.org/10.1016/j.applthermaleng.2017.10.148 doi: 10.1016/j.applthermaleng.2017.10.148
    [5] Jaber H, Khaled M, Lemenand T, et al. (2017) Effect of exhaust gases temperature on the performance of a hybrid heat recovery system. Energy Proc 119: 775–782. https://doi.org/10.1016/j.egypro.2017.07.110 doi: 10.1016/j.egypro.2017.07.110
    [6] Jaber H, Khaled M, Lemenand T, et al. (2015) Short review on heat recovery from exhaust gas. Case Stud Therm Eng 119: 95–110. https://doi.org/10.1016/J.RSER.2017.08.016 doi: 10.1016/J.RSER.2017.08.016
    [7] Jaber H, Lemenand T, Ramadan M, et al. (2019) Hybrid heat recovery system applied to exhaust gases-thermal modeling and case study. Heat Transf Eng 42: 106–119. https://doi.org/10.1080/01457632.2019.1692495 doi: 10.1080/01457632.2019.1692495
    [8] Faraj A, Jaber H, Chahine K, et al. (2020) New concept of power generation using TEGs: Thermal modeling, parametric analysis, and case study. Entropy 22. https://doi.org/10.3390/E22050503
    [9] Sahoo SK (2016) Solar photovoltaic energy progress in India: A review. Renewable Sustainable Energy Rev 59: 927–939. https://doi.org/10.1016/j.rser.2016.01.049 doi: 10.1016/j.rser.2016.01.049
    [10] Armendariz-Lopez JF, Luna-Leon A, Gonzalez-Trevizo ME, et al. (2016) Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico. Renewable Energy 87: 564–571. https://doi.org/10.1016/j.renene.2015.10.051 doi: 10.1016/j.renene.2015.10.051
    [11] Humada AM, Hojabri M, Hamada HM, et al. (2016) Performance evaluation of two PV technologies (c-Si and CIS) for building-integrated photovoltaic based on tropical climate conditions: A case study in Malaysia. Energy Build 119: 233–241. https://doi.org/10.1016/j.enbuild.2016.03.052 doi: 10.1016/j.enbuild.2016.03.052
    [12] Herez A, El Hage H, Lemenand T, et al. (2021) Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis. Renewable Energy 165: 224–236. https://doi.org/10.1016/j.renene.2020.11.009 doi: 10.1016/j.renene.2020.11.009
    [13] Alhousni FK, Ismail FB, Okonkwo et al. (2022) A review of PV solar energy system operations and applications in Dhofar, Oman. AIMS Energy 10: 858–884. https://doi.org/10.3934/ENERGY.2022039 doi: 10.3934/ENERGY.2022039
    [14] Herez A, Hage H El, Lemenand T, et al. (2021) Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling, case studies, and economic and environmental analysis. Renewable Energy Focus 38: 9–21. https://doi.org/10.1016/j.ref.2021.05.001 doi: 10.1016/j.ref.2021.05.001
    [15] Van D, Gerardo D (2014) Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems. AIMS Energy 1: 99–115. https://doi.org/10.3934/ENERGY.2014.1.99 doi: 10.3934/ENERGY.2014.1.99
    [16] Herez A, El Hage H, Lemenand T, et al. (2020) Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications, and new systems. Sol Energy 207: 1321–1347. https://doi.org/10.1016/j.solener.2020.07.062 doi: 10.1016/j.solener.2020.07.062
    [17] Herez A, El Hage H, Lemenand T, et al. (2021) Parabolic trough photovoltaic thermoelectric hybrid system: Thermal modeling, case studies, and economic and environmental analyses. Sustainable Energy Technol Assess 47: 101368. https://doi.org/10.1016/j.seta.2021.101368 doi: 10.1016/j.seta.2021.101368
    [18] Masson G, Latour M, Biancardi D (2012) Global market outlook for photovoltaics until 2016. Available from: https://www.scirp.org/(S (i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID = 1124597.
    [19] Kamarzaman NA, Tan CW (2014) A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renewable Sustainable Energy Rev 37: 585–598. https://doi.org/10.1016/j.rser.2014.05.045 doi: 10.1016/j.rser.2014.05.045
    [20] Voudoukis NF (2018) Photovoltaic technology and innovative solar cells. Eur J Electr Eng Comput Sci 2. https://doi.org/10.24018/EJECE.2018.2.1.13 doi: 10.24018/EJECE.2018.2.1.13
    [21] Mundo-Hernández J, De Celis Alonso B, Hernández-Álvarez J, et al. (2014) An overview of solar photovoltaic energy in Mexico and Germany. Renewable Sustainable Energy Rev 31: 639–649. https://doi.org/10.1016/j.rser.2013.12.029 doi: 10.1016/j.rser.2013.12.029
    [22] Lin JX, Wen PL, Feng CC, et al. (2014) Policy target, feed-in tariff, and technological progress of PV in Taiwan. Renewable Sustainable Energy Rev 39: 628–639. https://doi.org/10.1016/j.rser.2014.07.112 doi: 10.1016/j.rser.2014.07.112
    [23] Paiano A (2015) Photovoltaic waste assessment in Italy. Renewable Sustainable Energy Rev 41: 99–112. https://doi.org/10.1016/j.rser.2014.07.208 doi: 10.1016/j.rser.2014.07.208
    [24] Khan HA, Pervaiz S (2013) Technological review on solar PV in Pakistan: Scope, practices, and recommendations for optimized system design. Renewable Sustainable Energy Rev 23: 147–154. https://doi.org/10.1016/j.rser.2013.02.031 doi: 10.1016/j.rser.2013.02.031
    [25] Khatib T, Mohamed A, Sopian K (2013) A review of photovoltaic systems size optimization techniques. Renewable Sustainable Energy Rev 22: 454–465. https://doi.org/10.1016/j.rser.2013.02.023. doi: 10.1016/j.rser.2013.02.023
    [26] Makki A, Omer S, Sabir H (2015) Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renewable Sustainable Energy Rev 41: 658–684. https://doi.org/10.1016/j.rser.2014.08.069 doi: 10.1016/j.rser.2014.08.069
    [27] Jordehi AR (2016) Parameter estimation of solar photovoltaic (PV) cells: A review. Renewable Sustainable Energy Rev 61: 354–371. https://doi.org/10.1016/j.rser.2016.03.049 doi: 10.1016/j.rser.2016.03.049
    [28] Awasthi A, Shukla AK, Murali Manohar SR, et al. (2020) Review on sun tracking technology in solar PV system. Energy Rep 6: 392–405. https://doi.org/10.1016/j.egyr.2020.02.004 doi: 10.1016/j.egyr.2020.02.004
    [29] Wong J, Lim YS, Tang JH, et al. (2014) Grid-connected photovoltaic system in Malaysia: A review on voltage issues. Renewable Sustainable Energy Rev 29: 535–545. https://doi.org/10.1016/j.rser.2013.08.087 doi: 10.1016/j.rser.2013.08.087
    [30] Khan J, Arsalan MH (2016) Solar power technologies for sustainable electricity generation—A review. Renewable Sustainable Energy Rev 55: 414–425. https://doi.org/10.1016/j.rser.2015.10.135 doi: 10.1016/j.rser.2015.10.135
    [31] Tao J, Yu S (2015) Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol Energy Mater Sol Cells 141: 108–124. https://doi.org/10.1016/j.solmat.2015.05.005 doi: 10.1016/j.solmat.2015.05.005
    [32] Zarmai MT, Ekere NN, Oduoza CF, et al. (2015) A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assembly. Appl Energy 154: 173–182. https://doi.org/10.1016/j.apenergy.2015.04.120 doi: 10.1016/j.apenergy.2015.04.120
    [33] Sugathan V, John E, Sudhakar K (2015) Recent improvements in dye sensitized solar cells: A review. Renewable Sustainable Energy Rev 52: 54–64. https://doi.org/10.1016/j.rser.2015.07.076 doi: 10.1016/j.rser.2015.07.076
    [34] El-Khozondar HJ, El-Khozondar RJ, Matter K (2015) Parameters influence on MPP value of the photo voltaic cell. Energy Proc 74: 1142–1149. https://doi.org/10.1016/j.egypro.2015.07.756 doi: 10.1016/j.egypro.2015.07.756
    [35] Ramli MAM, Hiendro A, Sedraoui K, et al. (2015) Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia. Renewable Energy 75: 489–495. https://doi.org/10.1016/j.renene.2014.10.028 doi: 10.1016/j.renene.2014.10.028
    [36] Hernández-Moro J, Martínez-Duart JM (2015) Economic analysis of the contribution of photovoltaics to the decarbonization of the power sector. Renewable Sustainable Energy Rev 41: 1288–1297. https://doi.org/10.1016/j.rser.2014.09.025 doi: 10.1016/j.rser.2014.09.025
    [37] Dean AD (2015) Review on Photovoltaic Technology Based. Int J Adv Technol Eng Sci 3: 215–20. Available from: http://www.ijates.com/images/short_pdf/1424872115_P215-220.pdf.
    [38] Guerrero-Lemus R, Vega R, Kim T, et al. (2016) Bifacial solar photovoltaics—A technology review. Renewable Sustainable Energy Rev 60: 1533–1549. https://doi.org/10.1016/j.rser.2016.03.041 doi: 10.1016/j.rser.2016.03.041
    [39] Kow KW, Wong YW, Rajkumar RK, et al. (2016) A review on performance of artificial intelligence and conventional methods in mitigating PV grid-tied related power quality events. Renewable Sustainable Energy Rev 56: 334–346. https://doi.org/10.1016/j.rser.2015.11.064 doi: 10.1016/j.rser.2015.11.064
    [40] Sengupta D, Das P, Mondal B, et al. (2016) Effects of doping, morphology, and film thickness of photo-anode materials for dye sensitized solar cell application—A review. Renewable Sustainable Energy Rev 60: 356–376. https://doi.org/10.1016/j.rser.2016.01.104 doi: 10.1016/j.rser.2016.01.104
    [41] Forcan M, Durišić Ž, Mikulović J (2016) An algorithm for elimination of partial shading effect based on a theory of reference PV string. Sol Energy 132: 51–63. https://doi.org/10.1016/j.solener.2016.03.003 doi: 10.1016/j.solener.2016.03.003
    [42] Teffah K, Zhang Y (2017) Modeling and experimental research of a hybrid PV-thermoelectric system for high concentrated solar energy conversion. Sol Energy 157: 10–19. https://doi.org/10.1016/j.solener.2017.08.017 doi: 10.1016/j.solener.2017.08.017
    [43] Singh R, Banerjee R (2017) Impact of large-scale rooftop solar PV integration: An algorithm for hydrothermal-solar scheduling (HTSS). Sol Energy 157: 988–1004. https://doi.org/10.1016/j.solener.2017.09.021 doi: 10.1016/j.solener.2017.09.021
    [44] Qureshi TM, Ullah K, Arentsen MJ (2017) Factors responsible for solar PV adoption at household level: A case of Lahore, Pakistan. Renewable Sustainable Energy Rev 78: 754–763. https://doi.org/10.1016/j.rser.2017.04.020 doi: 10.1016/j.rser.2017.04.020
    [45] Jayaraman K, Paramasivan L, Kiumarsi S (2017) Reasons for low penetration in the purchase of photovoltaic (PV) panel systems among Malaysian landed property owners. Renewable Sustainable Energy Rev 80: 562–571. https://doi.org/10.1016/j.rser.2017.05.213 doi: 10.1016/j.rser.2017.05.213
    [46] Vasel A, Iakovidis F (2017) The effect of wind direction on the performance of solar PV plants. Energy Convers Manage 153: 455–461. https://doi.org/10.1016/j.enconman.2017.09.077 doi: 10.1016/j.enconman.2017.09.077
    [47] Quansah DA, Adaramola MS, Appiah GK, et al. (2017) Performance analysis of different grid-connected solar photovoltaic (PV) system technologies with a combined capacity of 20 kW located in a humid tropical climate. Int J Hydrogen Energy 42: 4626–4635. https://doi.org/10.1016/j.ijhydene.2016.10.119 doi: 10.1016/j.ijhydene.2016.10.119
    [48] Prasanth Ram J, Rajasekar N (2017) A new global maximum power point tracking technique for solar photovoltaic (PV) systems under partial shading conditions (PSC). Energy 118: 512–525. https://doi.org/10.1016/j.energy.2016.10.084 doi: 10.1016/j.energy.2016.10.084
    [49] Rezaee Jordehi A (2018) Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Sol Energy 159: 78–87. https://doi.org/10.1016/j.solener.2017.10.063 doi: 10.1016/j.solener.2017.10.063
    [50] Dhanalakshmi B, Rajasekar N (2018) Dominance square based array reconfiguration scheme for power loss reduction in solar PhotoVoltaic (PV) systems. Energy Convers Manage 156: 84–102. https://doi.org/10.1016/j.enconman.2017.10.080 doi: 10.1016/j.enconman.2017.10.080
    [51] Palm J, Eidenskog M, Luthander R (2018) Sufficiency, change, and flexibility: Critically examining the energy consumption profiles of solar PV prosumers in Sweden. Energy Res Soc Sci 39: 12–18. https://doi.org/10.1016/j.erss.2017.10.006 doi: 10.1016/j.erss.2017.10.006
    [52] Honrubia-Escribano A, Ramirez FJ, Gómez-Lázaro E, et al. (2018) Influence of solar technology in the economic performance of PV power plants in Europe. A comprehensive analysis. Renewable Sustainable Energy Rev 82: 488–501. https://doi.org/10.1016/j.rser.2017.09.061 doi: 10.1016/j.rser.2017.09.061
    [53] Andenaes E, Jelle BP, Ramlo K, et al. (2018) The influence of snow and ice coverage on the energy generation from photovoltaic solar cells. Sol Energy 159: 318–328. https://doi.org/10.1016/j.solener.2017.10.078 doi: 10.1016/j.solener.2017.10.078
    [54] Moslehi S, Reddy TA, Katipamula S (2018) Evaluation of data-driven models for predicting solar photovoltaics power output. Energy 142: 1057–1065. https://doi.org/10.1016/j.energy.2017.09.042 doi: 10.1016/j.energy.2017.09.042
    [55] Dehghani E, Jabalameli MS, Jabbarzadeh A (2018) Robust design and optimization of the solar photovoltaic supply chain in an uncertain environment. Energy 142: 139–156. https://doi.org/10.1016/j.energy.2017.10.004 doi: 10.1016/j.energy.2017.10.004
    [56] Xu L, Zhang S, Yang M, et al. (2018) Environmental effects of China's solar photovoltaic industry during 2011–2016: A life cycle assessment approach. J Clean Prod 170: 310–329. https://doi.org/10.1016/j.jclepro.2017.09.129 doi: 10.1016/j.jclepro.2017.09.129
    [57] Saxena A, Deshmukh S, Nirali S, et al. (2018) Laboratory-based experimental investigation of Photovoltaic (PV) thermo-control with water and its proposed real-time implementation. Renewable Energy 115: 128–138. https://doi.org/10.1016/j.renene.2017.08.029 doi: 10.1016/j.renene.2017.08.029
    [58] Hoffmann FM, Molz RF, Kothe JV, et al. (2018) Monthly profile analysis based on a two-axis solar tracker proposal for photovoltaic panels. Renewable Energy 115: 750–759. https://doi.org/10.1016/j.renene.2017.08.079 doi: 10.1016/j.renene.2017.08.079
    [59] Jakica N (2018) State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics. Renewable Sustainable Energy Rev 81: 1296–1328. https://doi.org/10.1016/j.rser.2017.05.080 doi: 10.1016/j.rser.2017.05.080
    [60] Ram JP, Manghani H, Pillai DS, et al. (2018) Analysis on solar PV emulators: A review. Renewable Sustainable Energy Rev 81: 149–160. https://doi.org/10.1016/j.rser.2017.07.039 doi: 10.1016/j.rser.2017.07.039
    [61] Belarbi M, Haddouche K, Sahli B, et al. (2018) Self-reconfiguring MPPT to avoid buck-converter limits in solar photovoltaic systems. Renewable Sustainable Energy Rev 82: 187–193. https://doi.org/10.1016/j.rser.2017.09.019 doi: 10.1016/j.rser.2017.09.019
    [62] Hyder F, Sudhakar K, Mamat R (2018) Solar PV tree design: A review. Renewable Sustainable Energy Rev 82: 1079–1096. https://doi.org/10.1016/j.rser.2017.09.025 doi: 10.1016/j.rser.2017.09.025
    [63] Shayestegan M, Shakeri M, Abunima H, et al. (2018) An overview of the prospects of new-generation single-phase transformerless inverters for grid-connected photovoltaic (PV) systems. Renewable Sustainable Energy Rev 82: 515–530. https://doi.org/10.1016/j.rser.2017.09.055 doi: 10.1016/j.rser.2017.09.055
    [64] Novaes Pires Leite G de, Weschenfelder F, Araújo AM, et al. (2019) An economic analysis of the integration between air-conditioning and solar photovoltaic systems. Energy Convers Manage 185: 836–849. https://doi.org/10.1016/j.enconman.2019.02.037 doi: 10.1016/j.enconman.2019.02.037
    [65] Rahnama E, Aghbashlo M, Tabatabaei M, et al. (2019) Spatio-temporal solar exergoeconomic and exergoenvironmental maps for photovoltaic systems. Energy Convers Manage 195: 701–711. https://doi.org/10.1016/j.enconman.2019.05.051 doi: 10.1016/j.enconman.2019.05.051
    [66] Zhao BY, Zhao ZG, Li Y, et al. (2019) An adaptive PID control method to improve the power tracking performance of solar photovoltaic air-conditioning systems. Renewable Sustainable Energy Rev 113: 109250. https://doi.org/10.1016/j.rser.2019.109250 doi: 10.1016/j.rser.2019.109250
    [67] Fernández R, Ortiz C, Chacartegui R, et al. (2019) Dispatchability of solar photovoltaics from thermochemical energy storage. Energy Convers Manage 191: 237–246. https://doi.org/10.1016/j.enconman.2019.03.074 doi: 10.1016/j.enconman.2019.03.074
    [68] Rosas-Flores JA, Zenón-Olvera E, Gálvez DM (2019) Potential energy savings in urban and rural households of Mexico with solar photovoltaic systems using geographical information systems. Renewable Sustainable Energy Rev 116: 109412. https://doi.org/10.1016/j.rser.2019.109412 doi: 10.1016/j.rser.2019.109412
    [69] Rajvikram M, Sivasankar G (2019) Experimental study conducted for the identification of the best heat absorption and dissipation methodology in solar photovoltaic panels. Sol Energy 193: 283–292. https://doi.org/10.1016/j.solener.2019.09.053 doi: 10.1016/j.solener.2019.09.053
    [70] Troncoso N, Rojo-González L, Villalobos M, et al. (2019) Economic decision-making tool for distributed solar photovoltaic panels and storage: The case of Chile. Energy Proc 159: 388–393. https://doi.org/10.1016/j.egypro.2018.12.071 doi: 10.1016/j.egypro.2018.12.071
    [71] Trindade A, Cordeiro L (2019) Automated formal verification of stand-alone solar photovoltaic systems. Sol Energy 193: 684–691. https://doi.org/10.1016/j.solener.2019.09.093 doi: 10.1016/j.solener.2019.09.093
    [72] Liu J, Chen X, Cao S, et al. (2019) Overview on hybrid solar photovoltaic-electrical energy storage technologies for power supply to buildings. Energy Convers Manage 187: 103–121. https://doi.org/10.1016/j.enconman.2019.02.080 doi: 10.1016/j.enconman.2019.02.080
    [73] Kiyaninia A, Karimi H, Madadi Avargani V (2019) Exergoeconomic analysis of a solar photovoltaic-based direct evaporative air-cooling system. Sol Energy 193: 253–266. https://doi.org/10.1016/j.solener.2019.09.068 doi: 10.1016/j.solener.2019.09.068
    [74] Sow A, Mehrtash M, Rousse DR, et al. (2019) Economic analysis of residential solar photovoltaic electricity production in Canada. Sustainable Energy Technol Assess 33: 83–94. https://doi.org/10.1016/j.seta.2019.03.003 doi: 10.1016/j.seta.2019.03.003
    [75] Zafrilla JE, Arce G, Cadarso MÁ, et al. (2019) Triple bottom line analysis of the Spanish solar photovoltaic sector: A footprint assessment. Renewable Sustainable Energy Rev 114: 109311. https://doi.org/10.1016/j.rser.2019.109311 doi: 10.1016/j.rser.2019.109311
    [76] Zieba Falama R, Hidayatullah, Doka SY (2019) A promising concept to push efficiency of pn-junction photovoltaic solar cell beyond Shockley and Queisser limit based on impact ionization due to high electric field. Optik 187: 39–48. https://doi.org/10.1016/j.ijleo.2019.04.136 doi: 10.1016/j.ijleo.2019.04.136
    [77] Sadanand, Dwivedi DK (2020) Numerical modeling for earth-abundant highly efficient solar photovoltaic cell of non-toxic buffer layer. Opt Mater (Amst) 109: 110409. https://doi.org/10.1016/j.optmat.2020.110409 doi: 10.1016/j.optmat.2020.110409
    [78] Ren FR, Tian Z, Liu J, et al. (2020) Analysis of CO2 emission reduction contribution and efficiency of China's solar photovoltaic industry: Based on input-output perspective. Energy 199: 117493. https://doi.org/10.1016/j.energy.2020.117493 doi: 10.1016/j.energy.2020.117493
    [79] Qi L, Jiang M, Lv Y, et al. (2020) A celestial motion-based solar photovoltaics installed on a cooling tower. Energy Convers Manage 216: 112957. https://doi.org/10.1016/j.enconman.2020.112957 doi: 10.1016/j.enconman.2020.112957
    [80] Jan I, Ullah W, Ashfaq M (2020) Social acceptability of solar photovoltaic system in Pakistan: Key determinants and policy implications. J Clean Prod 274: 123140. https://doi.org/10.1016/j.jclepro.2020.123140 doi: 10.1016/j.jclepro.2020.123140
    [81] Janardhan K, Mittal A, Ojha A (2020) Performance investigation of stand-alone solar photovoltaic system with single phase micro multilevel inverter. Energy Reps 6: 2044–2055. https://doi.org/10.1016/j.egyr.2020.07.006 doi: 10.1016/j.egyr.2020.07.006
    [82] Kumar P, Pal N, Sharma H (2020) Performance analysis and evaluation of 10 kWp solar photovoltaic array for remote islands of Andaman and Nicobar. Sustainable Energy Technol Assess 42: 100889. https://doi.org/10.1016/j.seta.2020.100889 doi: 10.1016/j.seta.2020.100889
    [83] Ali MM, Ahmed OK, Abbas EF (2020) Performance of solar pond integrated with photovoltaic/thermal collectors. Energy Reps 6: 3200–3211. https://doi.org/10.1016/j.egyr.2020.11.037 doi: 10.1016/j.egyr.2020.11.037
    [84] Yang Y, Campana PE, Stridh B, Yan J (2020) Potential analysis of roof-mounted solar photovoltaics in Sweden. Appl Energy 279: 115786. https://doi.org/10.1016/j.apenergy.2020.115786 doi: 10.1016/j.apenergy.2020.115786
    [85] Anand B, Shankar R, Murugavelh S, et al. (2021) A review on solar photovoltaic thermal integrated desalination technologies. Renewable Sustainable Energy Rev 141: 110787. https://doi.org/10.1016/j.rser.2021.110787 doi: 10.1016/j.rser.2021.110787
    [86] Syahputra R, Soesanti I (2021) Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Reps 7: 472–490. https://doi.org/10.1016/j.egyr.2021.01.015 doi: 10.1016/j.egyr.2021.01.015
    [87] Alipour M, Salim H, Stewart RA, et al. (2021) Residential solar photovoltaic adoption behaviour: End-to-end review of theories, methods and approaches. Renewable Energy 170: 471–486. https://doi.org/10.1016/j.renene.2021.01.128 doi: 10.1016/j.renene.2021.01.128
    [88] Kazemian A, Parcheforosh A, Salari A, et al. (2021) Optimization of a novel photovoltaic thermal module in series with a solar collector using Taguchi based grey relational analysis. Sol Energy 215: 492–507. https://doi.org/10.1016/j.solener.2021.01.006 doi: 10.1016/j.solener.2021.01.006
    [89] Bhavsar S, Pitchumani R (2021) A novel machine learning based identification of potential adopter of rooftop solar photovoltaics. Appl Energy 286: 116503. https://doi.org/10.1016/j.apenergy.2021.116503 doi: 10.1016/j.apenergy.2021.116503
    [90] De RK, Ganguly A (2021) Modeling and analysis of a solar thermal-photovoltaic-hydrogen-based hybrid power system for running a standalone cold storage. J Clean Prod 293: 126202. https://doi.org/10.1016/j.jclepro.2021.126202 doi: 10.1016/j.jclepro.2021.126202
    [91] Wang Y, He J, Chen W, et al. (2021) Distributed solar photovoltaic development potential and a roadmap at the city level in China. Renewable Sustainable Energy Rev 141: 110772. https://doi.org/10.1016/j.rser.2021.110772 doi: 10.1016/j.rser.2021.110772
    [92] Rodziewicz T, Rajfur M, Teneta J, et al. (2021) Modelling and analysis of the influence of solar spectrum on the efficiency of photovoltaic modules. Energy Reps 7: 565–574. https://doi.org/10.1016/j.egyr.2021.01.013 doi: 10.1016/j.egyr.2021.01.013
    [93] Li Q, Zhang Y, Liu W, et al. (2022) Analysis of output coupling characteristics among multiple photovoltaic power stations based on correlation coefficient. Energy Reps 8: 908–915. https://doi.org/10.1016/J.EGYR.2022.10.031 doi: 10.1016/J.EGYR.2022.10.031
    [94] Yang H, Wang H (2022) Numerical simulation of the dust particles deposition on solar photovoltaic panels and its effect on power generation efficiency. Renewable Energy 201: 1111–1126. https://doi.org/10.1016/J.RENENE.2022.11.043 doi: 10.1016/J.RENENE.2022.11.043
    [95] Liu J, Sun J, Yuan H, et al. (2022) Behavior analysis of photovoltaic-storage-use value chain game evolution in a blockchain environment. Energy 260: 125182. https://doi.org/10.1016/J.ENERGY.2022.125182 doi: 10.1016/J.ENERGY.2022.125182
    [96] Yuan H, Ye H, Chen Y, et al. (2022) Research on the optimal configuration of photovoltaic and energy storage in a rural microgrid. Energy Reps 8: 1285–1293. https://doi.org/10.1016/J.EGYR.2022.08.115 doi: 10.1016/J.EGYR.2022.08.115
    [97] Bisognin Garlet T, Duarte Ribeiro JL, de Souza Savian F, et al. (2022) Competitiveness of the value chain of distributed generation of photovoltaic energy in Brazil. Energy Sustainable Dev 71: 447–461. https://doi.org/10.1016/J.ESD.2022.10.019 doi: 10.1016/J.ESD.2022.10.019
    [98] Peters IM, Hauch JA, Brabec CJ, et al. (2022) The role of innovation for the economy and sustainability of photovoltaic modules. IScience 25: 105208. https://doi.org/10.1016/J.ISCI.2022.105208 doi: 10.1016/J.ISCI.2022.105208
    [99] Micheli L, Talavera DL, Marco Tina G, et al. (2022) Techno-economic potential and perspectives of floating photovoltaics in Europe. Sol Energy 243: 203–214. https://doi.org/10.1016/J.SOLENER.2022.07.042 doi: 10.1016/J.SOLENER.2022.07.042
    [100] Kijo-Kleczkowska A, Bruś P, Więciorkowski G, et al. (2022) Profitability analysis of a photovoltaic installation—A case study. Energy 261: 125310. https://doi.org/10.1016/J.ENERGY.2022.125310 doi: 10.1016/J.ENERGY.2022.125310
    [101] Majewski P, Dias PR, et al. (2023) Product stewardship scheme for solar photovoltaic panels. Curr Opin Green Sustainable Chem 44: 100859. https://doi.org/10.1016/J.COGSC.2023.100859 doi: 10.1016/J.COGSC.2023.100859
    [102] Sun Y, Zhu D, Li Y, et al. (2023) Spatial modelling the location choice of large-scale solar photovoltaic power plants: Application of interpretable machine learning techniques and the national inventory. Energy Convers Manage 289: 117198. https://doi.org/10.1016/J.ENCONMAN.2023.117198 doi: 10.1016/J.ENCONMAN.2023.117198
    [103] Yu Y, Bai X, Li S, et al. (2023) Review of silicon recovery in the photovoltaic industry. Curr Opin Green Sustainable Chem 2023: 100870. https://doi.org/10.1016/J.COGSC.2023.100870 doi: 10.1016/J.COGSC.2023.100870
    [104] Lv S, Zhang M, Lai Y, et al. (2023) Comparative analysis of photovoltaic thermoelectric systems using different photovoltaic cells. Appl Therm Eng 235: 121356. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121356 doi: 10.1016/J.APPLTHERMALENG.2023.121356
    [105] Liao Q, Li S, Xi F, et al. (2023) High-performance silicon carbon anodes based on value-added recycling strategy of end-of-life photovoltaic modules. Energy 281: 128345. https://doi.org/10.1016/J.ENERGY.2023.128345 doi: 10.1016/J.ENERGY.2023.128345
    [106] Gao L, Zhang X, Hua W (2023) Recent progress in photovoltaic thermal phase change material technology: A review. J Energy Storage 65: 107317. https://doi.org/10.1016/J.EST.2023.107317 doi: 10.1016/J.EST.2023.107317
    [107] Yasmeen R, Wang B, Shah WUH, et al. (2023) Adequacy of photovoltaic power on provincial and regional levels of income inequality in China. Sol Energy 262: 111906. https://doi.org/10.1016/J.SOLENER.2023.111906 doi: 10.1016/J.SOLENER.2023.111906
    [108] Al Miaari A, Ali HM (2023) Technical method in passive cooling for photovoltaic panels using phase change material. Case Stud Therm Eng 49: 103283. https://doi.org/10.1016/J.CSITE.2023.103283 doi: 10.1016/J.CSITE.2023.103283
    [109] Yao Y, Wang Y, Jia H, et al. (2023) An analytical approach based on coupled multi-physics model for photovoltaic arrays performance simulation. Electr Power Syst Res 224: 109773. https://doi.org/10.1016/J.EPSR.2023.109773 doi: 10.1016/J.EPSR.2023.109773
    [110] Wang Y, Cui X, Huang H (2023) Spatial patterns and environmental benefits of photovoltaic poverty alleviation programs in China. Environ Impact Assess Rev 103: 107272. https://doi.org/10.1016/J.EIAR.2023.107272 doi: 10.1016/J.EIAR.2023.107272
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1518) PDF downloads(164) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog