Citation: Mahmoud M. Gamil, Mohammed Elsayed Lotfy, Ashraf M. Hemeida, Paras Mandal, Hiroshi Takahashi, Tomonobu Senjyu. Optimal sizing of a residential microgrid in Egypt under deterministic and stochastic conditions with PV/WG/Biomass Energy integration[J]. AIMS Energy, 2021, 9(3): 483-515. doi: 10.3934/energy.2021024
[1] | Bakr N, Bahnassy MH (2019) Egyptian Natural Resources. The Soils of Egypt, Springer 33–49. |
[2] | Yoldaş Y, Önen A, Muyeen S, Vasilakos AV, et al. (2017) Enhancing smart grid with microgrids: Challenges and opportunities. Renewable Sustainable Energy Rev 72: 205–214. doi: 10.1016/j.rser.2017.01.064 |
[3] | Abdulgalil MA, Khalid M, Alismail F (2019) Optimal sizing of battery energy storage for a grid-connected microgrid subjected to wind uncertainties. Energies 12: 2412. doi: 10.3390/en12122412 |
[4] | Beshr E (2013) Comparative study of adding PV/wind energy systems to autonomus micro grid. IEEE 3rd International Conference on Electric Power and Energy Conversion Systems: 1–6. |
[5] | Krepl V, Shaheen HI, Fandi G, et al. (2020) The Role of Renewable Energies in the Sustainable Development of Post-Crisis Electrical Power Sectors Reconstruction. Energies 13: 6326. doi: 10.3390/en13236326 |
[6] | Ullah S, Haidar AM, Hoole P, et al. (2020) The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. J Cleaner Prod 122777. |
[7] | International renewable energy agency (2018) Renewable Energy Outlook: Egypt. |
[8] | Abdo T, EL-Shimy M (2013) Estimation of global solar radiation (gsr) over egypt, The Future of New and Renewable Energy in Arab World. February 12th – 14th, 2013, Assiut, EGYPT. |
[9] | Sarkar T, Bhattacharjee A, Samanta H, et al. (2019) Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Renewable Sustainable Energy Rev 191: 102–118. |
[10] | Situmorang YA, Zhao Z, Yoshida A, et al. (2020) Small-scale biomass gasification systems for power generation (<200 kW class): A review. Renewable Sustainable Energy Rev 117: 109486. doi: 10.1016/j.rser.2019.109486 |
[11] | Torigoe K, Hasegawa S, Numata O, et al. (2000) Influence of emission from rice straw burning on bronchial asthma in children. Pediatr Intl 42: 143–150. doi: 10.1046/j.1442-200x.2000.01196.x |
[12] | Röder M, Jamieson C, Thornley P (2020) (Stop) burning for biogas. Enabling positive sustainability trade-offs with business models for biogas from rice straw. Biomass Bioenergyy 138: 105598. doi: 10.1016/j.biombioe.2020.105598 |
[13] | Zhao XG, Zhang ZQ, Xie YM, et al. (2020) Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization. Energy 195: 117014. doi: 10.1016/j.energy.2020.117014 |
[14] | Castillo-Calzadilla T, Macarulla AM, Kamara-Esteban, O, et al. (2020) A case study comparison between photovoltaic and fossil generation based on direct current hybrid microgrids to power a service building. J Cleaner Prod 244: 118870. doi: 10.1016/j.jclepro.2019.118870 |
[15] | Alsaidan I, Alanazi A, Gao W, et al. (2017) State-of-the-art in microgrid-integrated distributed energy storage sizing. Energies 10: 1421. doi: 10.3390/en10091421 |
[16] | Cuesta MA, Castillo-Calzadilla T, Borges C (2020) A critical analysis on hybrid renewable energy modeling tools: An emerging opportunity to include social indicators to optimise systems in small communities. Renewable Sustainable Energy Rev 122: 109691. doi: 10.1016/j.rser.2019.109691 |
[17] | Aguilar-Jiménez J, Velázquez N, Acuña A, et al. (2018) Techno-economic analysis of a hybrid PV-CSP system with thermal energy storage applied to isolated microgrids. Solar Energy 174: 55–65. doi: 10.1016/j.solener.2018.08.078 |
[18] | Charabi Y, Abdul-Wahab S (2020) The optimal sizing and performance assessment of a hybrid renewable energy system for a mini-gird in an exclave territory. AIMS Energy 8: 669–685. doi: 10.3934/energy.2020.4.669 |
[19] | Zamani MH, Riahy GH (2008) Introducing a new method for optimal sizing ofa hybrid (wind/pv/battery) system considering instantaneous wind speedvariations. Energy Sustainable Develop 12: 27–33. doi: 10.1016/S0973-0826(08)60426-3 |
[20] | Ghazvini AM, Olamaei J (2019) Optimal sizing of autonomous hybrid PV system with considerations for V2G parking lot as controllable load based on a heuristic optimization algorithm. Solar Energy 184: 30–39. doi: 10.1016/j.solener.2019.03.087 |
[21] | Syed IM (2017) Near-optimal standalone hybrid PV/WE system sizing method. Solar Energy 157: 727–734. doi: 10.1016/j.solener.2017.08.085 |
[22] | Bukar AL, Tan CW, Lau KY (2019) Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Solar Energy 188: 685–696. doi: 10.1016/j.solener.2019.06.050 |
[23] | Ho WS, Hashim H, Muis ZA (2012) Integrated biomass power plant and storage for peak load management. Comput Aided Chem Eng 31: 1000–1004. doi: 10.1016/B978-0-444-59506-5.50031-6 |
[24] | Sufyan M, Abd Rahim N, Tan C, et al. (2019) Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation. Plos One 14: e0211642. doi: 10.1371/journal.pone.0211642 |
[25] | Guerra G, Martinez-Velasco JA (2018) Optimal sizing and operation of energy storage systems considering long term assessment. AIMS Energy 6: 70–96. doi: 10.3934/energy.2018.1.70 |
[26] | Lehtveer M, Fridahl M (2020) Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences. Energy 213: 118786. doi: 10.1016/j.energy.2020.118786 |
[27] | Jimenez O, Curbelo A, Suarez Y (2012) Biomass based gasifier for providing electricity and thermal energy to off-grid locations in Cuba. Conceptual design. Energy Sustainable Develop 16: 98–102. doi: 10.1016/j.esd.2011.12.003 |
[28] | Ghenai C, Janajreh I (2016) Design of solar-biomass hybrid microgrid system in Sharjah. Energy Procedia 103: 357–362. doi: 10.1016/j.egypro.2016.11.299 |
[29] | Wincy WB, Edwin M, Sekhar SJ (2020) Energy and exergy evaluation of rice processing mills working with biomass gasifier in parboiling process. Fuel 259: 116255. doi: 10.1016/j.fuel.2019.116255 |
[30] | Cao L, Iris K, Xiong X, et al. (2020) Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environ Res 186: 109547. doi: 10.1016/j.envres.2020.109547 |
[31] | Dasappa S (2011) Potential of biomass energy for electricity generation in sub-Saharan Africa. Energy Sustainable Develop 15: 203–213. doi: 10.1016/j.esd.2011.07.006 |
[32] | Liu Z, Xu A, Long B, et al. (2011) Energy from combustion of rice straw: status and challenges to China. Energy Power Eng 3: 325. doi: 10.4236/epe.2011.33040 |
[33] | Abdelhady S, Borello D, Shaban A, et al. (2014) Viability study of biomass power plant fired with rice straw in Egypt. Energy Procedia 61: 211–215. doi: 10.1016/j.egypro.2014.11.1072 |
[34] | Borges CE, Kamara-Esteban O, Castillo-Calzadilla T, et al. (2020) Enhancing the missing data imputation of primary substation load demand records. Sustainable Energy Grids Networks 23: 100369. doi: 10.1016/j.segan.2020.100369 |
[35] | Mehrjerdi H, Rakhshani E (2019) Correlation of multiple time-scale and uncertainty modelling for renewable energy-load profiles in wind powered system. J Cleaner Prod 236: 117644. doi: 10.1016/j.jclepro.2019.117644 |
[36] | Mohammadi S, Soleymani S, Mozafari B (2014) Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices. Int J Electr Power Energy Syst 54: 525–535. doi: 10.1016/j.ijepes.2013.08.004 |
[37] | Qiao X, Zou Y, Li Y, et al. (2019) Impact of uncertainty and correlation on operation of micro-integrated energy system. Int J Electr Power Energy Syst 112: 262–271. doi: 10.1016/j.ijepes.2019.03.066 |
[38] | Li L, Yang L (2012) A chance-constrained programming based energy storage system sizing model considering uncertainty of wind power. International Conference on Sustainable Power Generation and Supply, Hangzhou, 1–6. |
[39] | Lennard M, Date A, Yu X (2017) Islanded microgrid energy system parameter estimation using stochastic methods. Solar Energy 147: 300–313. doi: 10.1016/j.solener.2016.12.041 |
[40] | Ansari MM, Guo C, Shaikh M, et al. (2020) Considering the uncertainty of hydrothermal wind and solar-based DG. Alexandria Eng J 59: 4211–4236. doi: 10.1016/j.aej.2020.07.026 |
[41] | Luo L, Abdulkareem SS, Rezvani A, et al. (2020) Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty. J Energy Storage 28: 101306. doi: 10.1016/j.est.2020.101306 |
[42] | Thang V, Ha T (2019) Optimal siting and sizing of renewable sources in distribution system planning based on life cycle cost and considering uncertainties. AIMS Energy 7: 211–226. doi: 10.3934/energy.2019.2.211 |
[43] | Shouman ER (2017) International and national renewable energy for electricity with optimal cost effective for electricity in Egypt. Renewable Sustainable Energy Rev 77: 916–923. doi: 10.1016/j.rser.2016.12.107 |
[44] | Kiptoo MK, Adewuyi OB, Lotfy ME, et al. (2019) Assessing the techno-economic benefits of flexible demand resources scheduling for renewable energy–based smart microgrid planning. Future Internet 11: 219. doi: 10.3390/fi11100219 |
[45] | Ramli MA, Bouchekara H, Alghamdi AS (2018) Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renewable Energy 121: 400–411. doi: 10.1016/j.renene.2018.01.058 |
[46] | Singh S, Singh M, Kaushik SC (2016) Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Convers Manage 128: 178–190. doi: 10.1016/j.enconman.2016.09.046 |
[47] | Heydari A, Askarzadeh A (2016) Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept. Appl Energy 165: 601–611. doi: 10.1016/j.apenergy.2015.12.095 |
[48] | Talaat M, Alsayyari AS, Alblawi A, et al. (2020) Hybrid-cloud-based data processing for power system monitoring in smart grids. Sustainable Cities Soc 55: 102049. doi: 10.1016/j.scs.2020.102049 |
[49] | Sediqi MM, Furukakoi M, Lotfy ME, et al. (2017) Optimal economical sizing of grid-connected hybrid renewable energy system. J Energy Power Eng 11: 244–53. |
[50] | Gamil MM, Sugimura M, Nakadomari A, et al. (2020) Optimal Sizing of a Real Remote Japanese Microgrid with Sea Water Electrolysis Plant Under Time-Based Demand Response Programs Energies 13: 3666. |
[51] | Sugimura M, Gamil MM, Akter H, et al. (2020) Optimal sizing and operation for microgrid with renewable energy considering two types demand response. J Renewable Sustainable Energy 12: 065901. doi: 10.1063/5.0008065 |
[52] | Tobaru S, Shigenobu R, Sharma A, et al. (2016) Optimal operation method with fuel cells in plural regional power systems. IEEE Int Conf Evol Comput IEEE: 442–447. |
[53] | Murata T, Ishibuchi H (1995) MOGA: Multi-objective genetic algorithms. IEEE Int Conf Evol Comput 1: 289–294. |
[54] | Lotfy ME, Senjyu T, Farahat MA, et al. (2017) A frequency control approach for hybrid power system using multi-objective optimization. Energies 10: 80. doi: 10.3390/en10010080 |
[55] | Afzalan E, Joorabian M (2013) Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using epsilon-multi-objective genetic algorithm variable. Int J Electr Power Energy Syst 52: 55–67. doi: 10.1016/j.ijepes.2013.03.017 |
[56] | Philipson P, Hickey GL, Crowther MJ, et al. (2020) Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data. Comput Stat Data Anal 151: 107010. doi: 10.1016/j.csda.2020.107010 |
[57] | Maleki A, Khajeh MG, Ameri M (2016) Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty. Int J Electr Power Energy Syst 83: 514–524. doi: 10.1016/j.ijepes.2016.04.008 |
[58] | Fioriti D, Poli D (2019) A novel stochastic method to dispatch microgrids using Monte Carlo scenarios. Electr Power Syst Res 175: 105896. doi: 10.1016/j.epsr.2019.105896 |
[59] | Zheng Y, Jenkins BM, Kornbluth K, et al. (2018) Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty. Appl Energy 230: 836–844. doi: 10.1016/j.apenergy.2018.09.015 |
[60] | Kiptoo MK, Lotfy ME, Adewuyi OB, et al. (2020) Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Convers Manage 215: 112917. doi: 10.1016/j.enconman.2020.112917 |