Citation: Obafemi O. Olatunji, Stephen Akinlabi, Nkosinathi Madushele, Paul A. Adedeji, Ishola Felix. Multilayer perceptron artificial neural network for the prediction of heating value of municipal solid waste[J]. AIMS Energy, 2019, 7(6): 944-956. doi: 10.3934/energy.2019.6.944
[1] | Negi H, Agrawal R, Verma A, et al. (2019) Municipal solid waste to bioenergy: current status, opportunities, and challenges in Indian context. New Future Developments Microb Biotechnol Bioeng 191-203. |
[2] | Doña-Grimaldi VM, Palma A, Ruiz-Montoya M, et al. (2019) Energetic valorization of MSW compost valorization by selecting the maturity conditions. J Environ Manage 238: 153-158. doi: 10.1016/j.jenvman.2019.02.125 |
[3] | Dutta S, Priya DN, Chakradhar B, et al. (2019) Value added by-products recovery from municipal solid waste, Waste Valorisation and Recycling, Singapore: Springer, 71-80. |
[4] | Perlack RD (2005) Biomass as Feedstock for a Bioenergy and Bioproducts Industry: the Technical Feasibility of a Billion-ton Annual Supply, Oak Ridge National Laboratory. |
[5] | Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: History, status, and perspective. Renew Sust Energ Rev 42: 712-725. doi: 10.1016/j.rser.2014.10.013 |
[6] | Olatunji OO, Akinlabi S, Madushele N, et al. (2019) Property-based biomass feedstock grading using k-nearest neighbour technique. Energy 2019: 116346. |
[7] | Istrate IR, García-Gusano D, Iribarren D, et al. (2019) Long-term opportunities for electricity production through municipal solid waste incineration when internalising external costs. J Clean Prod 215: 870-877. doi: 10.1016/j.jclepro.2019.01.137 |
[8] | United nations department of economic and social affairs/population division, World population prospects: The 2008 Revision. United nations department of economic and social affairs/population division, 2010. Available from: http://esa.un.org/unpp. |
[9] | World Bank, Solid Waste Management. World Bank, 2018. Available from: http://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management. |
[10] | Toumi H, Abidli S, Bejaoui M (2019) Microplastics in freshwater environment: the first evaluation in sediments from seven water streams surrounding the lagoon of Bizerte (Northern Tunisia). Environ Sci Pollut Res 26: 14673-14682. doi: 10.1007/s11356-019-04695-0 |
[11] | Abdel-Shafy HI, Mansour MSM (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egyptia J Petrol 27: 1275-1290. doi: 10.1016/j.ejpe.2018.07.003 |
[12] | Nabegu AB (2010) An analysis of municipal solid waste in Kano metropolis, Nigeria. J Hum Ecol 31: 111-119. doi: 10.1080/09709274.2010.11906301 |
[13] | Ikhlayel M (2018) Development of management systems for sustainable municipal solid waste in developing countries: a systematic life cycle thinking approach. J Clean Prod 180: 571-586. doi: 10.1016/j.jclepro.2018.01.057 |
[14] | Lokahita B, Samudro G, Huboyo HS, et al. (2019) Energy recovery potential from excavating municipal solid waste dumpsite in Indonesia. Energ Procedia 158: 243-248. doi: 10.1016/j.egypro.2019.01.083 |
[15] | Dalmo FC, Simão NM, de Lima HQ, et al. (2019) Energy recovery overview of municipal solid waste in São Paulo State, Brazil. J Clean Prod 212: 461-474. doi: 10.1016/j.jclepro.2018.12.016 |
[16] | Ghosh P, Shah G, Chandra R, et al. (2019) Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Bioresource Technol 272: 611-615. doi: 10.1016/j.biortech.2018.10.069 |
[17] | Dlamini S, Simatele MD, Serge Kubanza N (2019) Municipal solid waste management in South Africa: from waste to energy recovery through waste-to-energy technologies in Johannesburg. Local Environ 24: 249-257. doi: 10.1080/13549839.2018.1561656 |
[18] | Suresh H, Chanakya HN, Malayil S (2019) Creating value addition for MSW biogas plants: increasing mushroom yields with biogas plant digester liquid. Waste Valorisation and Recycling, Singapore: Springer, 447-451. |
[19] | Kumar A, Samadder SR (2017) A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manage 69: 407-422. doi: 10.1016/j.wasman.2017.08.046 |
[20] | Drudi KC, Drudi R, Martins G, et al. (2019) Statistical model for heating value of municipal solid waste in brazil based on gravimetric composition. Waste Management 87: 782-790. doi: 10.1016/j.wasman.2019.03.012 |
[21] | Al-Salem SM (2019) Energy production from plastic solid waste (PSW). Plast Energ 2019: 45-64. |
[22] | Fox JT, Zook AN, Freiss J, et al. (2019) Thermal conversion of blended food production waste and municipal sewage sludge to recoverable products. J Clean Prod 220: 57-64. doi: 10.1016/j.jclepro.2019.02.055 |
[23] | Mboowa D, Quereshi S, Bhattacharjee C, et al. (2017) Qualitative determination of energy potential and methane generation from municipal solid waste (MSW) in Dhanbad (India). Energy 123: 386-391. doi: 10.1016/j.energy.2017.02.009 |
[24] | Lee U, Han J, Wang M (2017) Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J Clean Prod 166: 335-342. doi: 10.1016/j.jclepro.2017.08.016 |
[25] | Li W, Loh KC, Zhang J, et al. (2018) Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system. Appl Energ 209: 400-408. doi: 10.1016/j.apenergy.2017.05.042 |
[26] | Olatunji OO, Akinlabi S, Madushele N, et al. (2019) Estimation of the elemental composition of biomass using hybrid adaptive neuro-fuzzy inference system. BioEnerg Res 12: 642-652. doi: 10.1007/s12155-019-10009-6 |
[27] | Olatunji O, Akinlabi S, Madushele N, et al. (2019) Estimation of municipal solid waste (MSW) combustion enthalpy for energy recovery. EAI Endorsed T Energ Web 6: 1-9. |
[28] | Obafemi O, Stephen A, Ajayi O, et al. (2019) A survey of artificial neural network-based prediction models for thermal properties of biomass. Procedia Manuf 33: 184-191. doi: 10.1016/j.promfg.2019.04.103 |
[29] | Baghban A, Ebadi T (2019) GA-ANFIS modeling of higher heating value of wastes: application to fuel upgrading. Energ Source Part A 41: 7-13. doi: 10.1080/15567036.2017.1344746 |
[30] | Akkaya E, Demir A (2010) Predicting the heating value of municipal solid waste-based materials: An artificial neural network model. Energ Source Part A 32: 1777-1783. doi: 10.1080/15567030902882950 |
[31] | Kathiravale S, Yunus MNM, Sopian K, et al. (2003) Modeling the heating value of Municipal Solid Waste. Fuel 82: 1119-1125. doi: 10.1016/S0016-2361(03)00009-7 |
[32] | Wilson DL (1972) Prediction of heat of combustion of solid wastes from ultimate analysis. Environ Sci Technol 6: 1119-1121. doi: 10.1021/es60072a011 |
[33] | Meraz L, Domı́nguez A, Kornhauser I, et al. (2003) A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition. Fuel 82: 1499-1507. doi: 10.1016/S0016-2361(03)00075-9 |
[34] | Boumanchar I, Chhiti Y, M'hamdi Alaoui FE, et al. (2019) Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques. Waste Manage Res 37: 578-589. doi: 10.1177/0734242X18816797 |
[35] | Niessen WR (2010) Combustion and Incineration Processes: Applications in Environmental Engineering, 2 Eds., Massachusetts: CRC Press. |
[36] | Chang YC (1982) Estimating heat of combustion for waste materials. Pollut Eng 14. |
[37] | Shi H, Mahinpey N, Aqsha A, et al. (2016) Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Manage 48: 34-47. doi: 10.1016/j.wasman.2015.09.036 |
[38] | ECN Phyllis2, Database for biomass and waste. ECN Phyllis2, 2018. Available from: https://phyllis.nl/Browse/Standard/ECN-Phyllis. |
[39] | Zarei F, Rahimi MR, Razavi R, et al. (2019) Insight into the experimental and modeling study of process intensification for post-combustion CO2 capture by rotating packed bed. J Clean Prod 211: 953-961. doi: 10.1016/j.jclepro.2018.11.239 |
[40] | Darvishan A, Bakhshi H, Madadkhani M, et al. (2018) Application of MLP-ANN as a novel predictive method for prediction of the higher heating value of biomass in terms of ultimate analysis. Energ Source Part A 40: 2960-2966. doi: 10.1080/15567036.2018.1514437 |
[41] | Sedighizadeh M, Mohammadpour AH, Alavi SM (2019) A two-stage optimal energy management by using ADP and HBB-BC algorithms for microgrids with renewable energy sources and storages. J Energ Storage 21: 460-480. doi: 10.1016/j.est.2018.12.010 |
[42] | Sibi P, Jones SA, Siddarth P (2013) Analysis of different activation functions using back propagation neural networks. J TheorAppl Inf Technol 47: 1264-1268. |
[43] | Karlik B, Olgac AV (2011) Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int J Artif Intell Expert Syst 1: 111-122. |
[44] | Cao W, Wang X, Ming Z, et al. (2018) A review on neural networks with random weights. Neurocomputing 275: 278-287. doi: 10.1016/j.neucom.2017.08.040 |
[45] | Ertuğrul ÖF (2018) A novel type of activation function in artificial neural networks: Trained activation function. NeurNet 99: 148-157. |
[46] | Uzun H, Yıldız Z, Goldfarb JL, et al. (2017) Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis. Bioresource Technol 234:122-130. doi: 10.1016/j.biortech.2017.03.015 |
[47] | Meesaraganda LP, Saha P, Tarafder N (2019) Artificial neural network for strength prediction of fibers' self-compacting concret, Soft Computing for Problem Solving, Singapore: Springer, 15-24. |
[48] | Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc for Ind Appl Math 11: 431-441. doi: 10.1137/0111030 |
[49] | Chu Y, Xu K, Zhong Y, Ye X, et al. (2018) Fast microwave through wall imaging method with inhomogeneous background based on Levenberg-Marquardt algorithm. IEEE T Microw Theory 67: 1138-1147. |
[50] | Costa MA, de Pádua Braga A, de Menezes BR (2007) Improving generalization of MLPs with sliding mode control and the Levenberg-Marquardt algorithm. Neurocomputing 70: 1342-1347. doi: 10.1016/j.neucom.2006.09.003 |
[51] | Bahremand S, Ko HS, Balouchzadeh R, et al. (2019) Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system. Med Biol Eng Comput 57: 177-191. doi: 10.1007/s11517-018-1872-6 |
[52] | İçer S, Kara S, Güven A (2006) Comparison of multilayer perceptron training algorithms for portal venous doppler signals in the cirrhosis disease. Expert Syst Appl 31: 406-413. doi: 10.1016/j.eswa.2005.09.037 |
[53] | Demuth H, Beale M, Hagan M (2004) Neural Network Toolbox 2 Eds.,User's Guide, version 4, The Mathworks. Natick, The MathWorks, Inc. |
[54] | Chang YF, Lin CJ, Chyan JM, et al. (2007) Multiple regression models for the lower heating value of municipal solid waste in Taiwan. J Environ Manage 85: 891-899. doi: 10.1016/j.jenvman.2006.10.025 |
[55] | Arora I, Saha A (2016) Comparison of back propagation training algorithms for software defect prediction. 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Noida, India. |