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Abstract: Energy from municipal solid waste is steadily being integrated into the global energy feedstock, 

given the huge amount of waste being generated from various sources. This study develops a Multilayer 

Perceptron Artificial Neural Network for the prediction of High Heating Value of municipal solid waste as a 

function of moisture content, carbon, hydrogen, oxygen, nitrogen, sulphur, and ash. A total of 123 experimental 

data were extracted from reliable database for training, testing, and validation of the model. This model was 

trained, validated and tested with 70%, 20%, and 10% of the municipal solid waste biomass datasets 

respectively. The predicted High Heating Value was compared with the experimental data for two different 

training functions: Levenberg Marquardt backpropagation and Resilience backpropagation, and with some 

correlation from the literature. The accuracy of the model was reported based on some known performance 

criteria. The values of Root Mean Squared Error (RMSE), Mean Absolute Deviation (MAD), Mean Absolute 

Percentage Error (MAPE), and Coefficient of Correlation (CC) were 3.587, 2.409, 21.680, 0.970 respectively 

for RP and 3.095, 0.328, 22.483, 0.986 for LM respectively. Regression analysis was also carried out to 

determine the level of correlation between the experimental and predicted High Heating Values (HHV). The 

authors concluded that these models can be a useful tool in the prediction of heating value of MSW in order to 

facilitate clean energy production from waste. 

Keywords: municipal solid waste; high heating value; multilayer perceptron; clean energy; Levenberg 

Marquardt backpropagation; resilience backpropagation 
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1. Introduction 

Waste utilization and management is a major challenge in sustainable development, given the mammoth 

amount of waste being generated from various sources across the globe. Presently, the main trend in waste 

management is the production of value-added products from Municipal Solid Waste (MSW) [1–3], since it 

leads to the reduction in the amount of MSW deposited at the landfill and also decreases the consumption of 

traditional fossil fuel [3]. MSW is gaining momentum as a viable source of biofuel [4–6], this place a relative 

advantage on it and biomass as other renewable sources cannot be readily converted to liquid fuel. Also, there 

exists a high prospect of MSW utilization in electricity generation [7]. The United Nation (UN) projected that 

the world population will increase by 2.2 billion between 2017 and 2050 [8]. This seemingly exponential 

increase in the world population and the quest for urban life will subsequently lead to increase in both the MSW 

generation and energy demand. The main driver of the increase in MSW in urban areas is the change in 

consumption pattern and living standard of the urban population. In 2016 only, 2.01 billion tonnes of solid 

waste was generated at the rate of 0.74 kg/person in a day across the global cities with 33% not managed in an 

environmentally safe manner [9]. From the statistics, the waste generated in cities across the globe may increase 

to 3.40 billion tonnes from 2016 level by year 2050 [9]. In low-income countries, around 90% of the waste 

generated are not properly disposed [10]. The MSW generated from developing countries are made of 55–80 % 

household, followed by market and commercial areas, which are made of industrial, institutional, and other 

related sources with 10–30% contribution [11,12]. Residents of developing countries are at risk due to 

unsustainable and indiscriminate disposal of waste [13]. In view of the severe risk associated with this practice, 

managing waste is very germane to environmental protection and climate change mitigation. Several countries 

have moved to quantify and utilize the MSW which they generate [14–17]. Given the cost implication of waste 

management, waste to energy (WTE) can be considered as a sustainable pathway to waste management. This 

has a high prospect of serving as an alternative source of energy [18] and in the production of other value-added 

products [3], which are economically viable and environmentally sustainable [18,19]. MSW is made up of 

various heterogeneous substances, from which energy can be produced through various conversion processes 

such as biological, thermochemical, anaerobic digestion, pyrolysis incineration and so on [20–25]. Also, 

methane capturing was proposed as a way to sustainably manage the MSW [16]. 

However, the design of new systems that can extract fuels from MSW requires knowledge of the 

fundamental properties of the MSW, especially its High heating value (HHV) and elemental composition as 

this gives the scientists and engineers a clue to the utility of the MSW in fuel production [26,27]. Heating value 

is used to determine the quantity of energy, which can be recovered from an amount of waste when subjected to 

conversion processes [20]. Although the heating value can be experimentally determined using bomb 

calorimeter, the current trend in global economy requires an urgent need to minimize the cost of production of 

energy, which include the determination of the heating value of MSW. The information from routine data such 

as moisture content, carbon, hydrogen, oxygen, nitrogen and sulphur, ash content enables rapid decisions about 

utilization of MSW. This will further provide a first-hand information regarding the gaseous emission and 

global warming potential of the MSW. 

Several models have been developed based on the experimental data from gravimetric composition, 

ultimate and proximate analysis and moisture content of waste [20]. However, most of these models do not 

account for the nonlinear dependencies of MSW [26–28]. This has therefore created a knowledge gap 

regarding the prediction of HHV of MSW [29,30]. A nonlinear dependency exists in MSW when a change in a 

property does not correspond to a change in other properties. For instance, a change in the moisture content or 

carbon content of MSW may not linearly correspond to a change in oxygen, hydrogen, nitrogen, or sulphur 
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content. Previous correlations and models based on ultimate analysis were developed by Kathiravale, et al. [31], 

Wilson [32], Meraz et al [33], Boumanchar, et al. [34], Niessen [35], Chang [36] and Shi, et al. [37] to estimate 

the heating value of  waste. 

Presented in Table 1 is an overview of correlations for the prediction of HHV of MSW feedstock. Also, 

Boumanchar, et al. [34] investigated Multiple Regression Analysis (MLR) and Genetic Programming (GP) 

formulation for the prediction of the HHV of MSW. Most of the correlations reported (Table 1) were based on 

the MSW [31,33,34,37], while others were based on organic waste [32,35,36]. 

Table 1. Correlations for the prediction of HHV. 

References 
Sample 

size 

Feedstock 

class 
Equation HHV (MJ/kg) 

Kathiravale et al 

[31] 
60 MSW                                                  

Boumanchar et al 

[34]-MLR 
187 MSW                        

Boumanchar et al 

[34]-GP 
187 MSW 

                             
       

       
 

       

       

 
        

       
 

       

         
 

 

Shi et al [37] 193 MSW                      

Meraz et al [33] 100 MSW 

 

                                                        

 

Wilson  [32] 100 
Organic 

waste 

                                              

          

 

Chang [36] 150 
Organic 

waste 
                                                 

    

Niessen [35] 80 
Waste water 

sludge 
                                                

Note: C=Carbon; H=Hydrogen; O=Oxygen; S=Sulphur; N=Nitrogen; Cl=Chlorine; P=Phosphorous (on dry basis in % weight); H2O=Moisture content 

(as discarded, in % weight). 

Apart from the above-mentioned issues which are related to the prediction of the HHV of MSW, to the 

best of our knowledge, the literature survey revealed that there is no model which have compared the HHV of 

biomass using LM and RP. Therefore, the present study constructs a Multilayer Perceptron Artificial Neural 

Network (MLP-ANN) model for the prediction of High Heating Value (HHV) of MSW using Levenberg 

Marquardt (LM) and Resilient backpropagation (RP) as the training algorithms with moisture content, carbon, 

hydrogen, oxygen, nitrogen and sulphur, ash as the input variables. 

2. Materials and methods 

2.1. Data collection and processing 

The data of experimental measurements from previous studies comprising 123 MSW samples were 

extracted from literature credited to Meraz, et al. [33] and Phyllis2 [38] since they are the most comprehensive 

database for MSW. Most of the MSW fall within the classes of domestic waste, plastic, paper, municipal residue, 
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textile and so on. The input variables are the percentage elemental constituents (C, O, H, N, S, ash on dry basis, 

and moisture content) and the output variable is the HHV (MJ/kg). The dataset for the model was divided into 

training, testing, and validation in the ratio 70%, 10%, and 20% respectively. The descriptive statistical 

distribution of the MSW data applied in this study is as shown in Table 2. 

Table 2. Descriptive statistical analysis of MSW experimental dataset. 

Composition H20 (%) C (%) H (%) O (%) N (%) S (%) Ash (%) HHV(MJ/kg) 

Minimum 0.2 0.5 0.08 0.23 0.04 0.01 0.26 0.14 

Maximum 78.7 87.1 14.2 47.8 10 1.5 98.9 45.9 

Average 20.4 42.8 5.7 27.1 1.2 0.3 23.2 16.2 

Std 22.5 18.3 2.7 13.8 1.7 0.3 28.9 9.6 

2.2. Principles of MLP-ANN 

START

 

 

        
Network 

Creation

 

 

H2O

C

H

N

S

O

Ash

HHV

Satisfactory 

prediction 

accuracy?

Yes

Test ANN 

model

END

H1 H2

No

Hidden Layer
Input 

Layer

Output Layer

        Network 

Initialization

Train        

Data 

Normalization 

Data 

Processing 

 

Figure 1. The schematic diagram for MLP-ANN. 

The Multilayer Perceptron (MLP) is a popular supervised learning technique in ANN whose architecture 

has been used for several forecasting problems in the literature [39–41]. It is a distributed mathematical model 

inspired by the behaviour of human brain and nervous system. The MLP basically consists of three layers; the 

input layer, hidden layer, and the output layer. The hidden layer may have one or more activation function(s) [42–45]. 

The input for this study is the elemental composition including the ash content of the MSW while the output is 

the HHV. In order to determine the optimal prediction model for the HHV, two training algorithms which are 
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Levenberg Marquardt (LM), and Resilient Backpropagation (RP) algorithms were applied. The network is made 

of two hidden layers H1 and H2 with 2 and 3 neurons in the first and second layer respectively. After initial trials, 

the activation function used at the first layer was logarithmic sigmoid [46,47] while the second layer was 

SoftMax [42] and linear function was chosen for the output layers. Figure 1 and 2 show the schematic diagram 

of  MLP-ANN and neural network architecture respectively. The training and testing steps involved in the MLP-

ANN for the prediction of the heating value were presented in Figure 1 while the transfer functions used in the 

model formulation were represented in Figure 2. 

 

Figure 2. Neural network architecture for the prediction of HHV. 

2.2.1. Levenberg-Marquardt backpropagation (LM) 

The Levenberg Marquardt algorithm is well-known algorithm which exhibits adaptive behaviour 

according to the solution distance [48]. It has shown better performance in variety of application when compared 

to gradient descent and other conjugate gradient methods [49,50]. This method was developed to approach the 

second-order training speed such that the need for the computation of Hessian matrix is ruled out [51,52]. 

Considering the effectiveness and efficiency of Newton’s method, LM aims at shifting to Newton’s method for 

a quick convergence. The Hessian matrix is approximated when the scalar   is zero, but for a large size of  , a 

gradient descent with small step size is adopted. This is such that the scalar   is reduced after each successful 

step and an increase is observed only when an increase in performance function is envisaged by a preliminary 

step. Thus, a reduction in the performance function, which is typically a sum of the squares for feedforward 

backpropagation networks is observed at every iteration during the network training process [53]. The Jacobian 

matrix, which contains the first derivatives of the network errors as a vector with respect to the weights and 

biases can be computed using a standard backpropagation technique. This computation is observed to be less 

complex than the Hessian matrix. The weight update is achieved as follows: 

                                                                                                                                                                                     

such that  

                                                                    
 

                
                                                                               

where   is the Jacobian matrix,   is a scalar constant and   is an identity matrix. 

2.2.2. Resilient backpropagation (RP) 

RP algorithm was developed to overcome the local minima error related to backpropagation. Resilient 

algorithm provides quick local adaptation during the training process. As one of the faster training algorithms, 

RP eliminates the effects caused by partial derivatives often associated with multi-layered networks trained with 
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sigmoid functions. Slope of sigmoid functions used in multi-layer perceptron approach zeros as input size gets 

larger. This becomes a problem when steepest descent with sigmoid functions are used for network training. A 

slight change in the gradient value causes a slight change in the values of the weights and biases, even when the 

weights and biases are not close to their optimal values [53]. Rather than using the magnitude of the partial 

derivatives, RP algorithm applies the weight step based local gradient sign to update the weight. When the 

updated value of each weight is adapted, the delta weights,      are transformed as follows [52]: 

                                                

 
 
 

 
                              

  

          
   

  

       
   

                                
  

          
   

  

       
     

                                                                                     

                                                          

where individual value change is        and the error function is  . RP algorithm gives a faster convergence 

during neural network training compared to most other algorithms. Table 3 presents the user-defined parameters 

for the training of the MLP model. 

Table 3. User defined parameters for MLP-ANN. 

User-defined Parameters Value 

Data division ratio 7:1:2 

Number of iterations 600 

Transfer functions logsig and softmax 

Activation function LM and RP 

Number of hidden layers 2 

Number of input variables 7 

Number of output variable 1 

Normalization method Min-max 

Stopping criteria Minimum training error 

2.3. Performance analysis 

The performance of the MLP-ANN model was based on some statistical measures which are; mean 

absolute deviation (MAD), root mean square error (RMSE), mean absolute percentage error (MAPE), and 

coefficient of correlation (CC). The choice of these metrics is based on their application in numerous related 

studies as an effective means of determining the eligibility of the model for prediction. The MAPE gives an 

information about the average error as a percentage of the predicted value whether the error is positive or 

negative. It is a dimensionless index. The lower the value of MAPE, the better the performance of the 

model [37]. According to Chang et al [54], if MAPE is < 10%, the performance of the model is said to be 

excellent, for values between 10% to less than 20%, the model is considered good; MAPE value from 20% to 

less than 50% is classified as acceptable, however, a MAPE value > 50 is classified as unacceptable [54]. 

Although this classification is not absolute since the acceptable MAPE baseline also depend on the 

characteristics of the dataset. CC measure the strength of the association between two variables. If the value 

stands at 0, it means there is no correlation between the variables, but if ranges between ﹣1 to 1 then it means 

there is a strong negative or positive correlation between the variables. As the RMSE is becoming lower, the 

model is expected to become better. 

Correlation Coefficient (CC) 
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             (4) 

Root Mean square Error (RMSE): 

       
           

   

 

 
         (5) 

Mean Absolute Deviation (MAD): 

     
 

 
            

           (6) 

Mean absolute percentage error (MAPE) 

      
 

 
   

       

  
  

                (7) 

3. Results and discussion 

The observed and predicted HHV at the testing phase using RP and LM are shown in Figure 3 and 4 

respectively in order to compare the prediction performance of both models. It was observed that the predicted 

HHV and the actual HHV showed similar trend with the minimum and maximum absolute discrepancies 

being 0.0148 and 8.2034 MJ/kg respectively for LM and 0.0048 and 8.6719 MJ/kg respectively for RP. Both 

models follow a similar pattern across 90% of the dataset, this further shows the similarity between the 

predicted and the actual HHV and underlines the advantage of nonlinear regression model in the prediction of 

variation between the input and output variables. The results obtained in Figure 3 and 4 could improve if the 

moisture content were ignored in the development of the model [27], but the significance of this parameter in 

practical application of MSW means that it should be accounted for. 

 

Figure 3. Predicted HHV for resilient back propagation (RP). 
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Figure 4. Prediction of HHV based on Levenberg Marquardt (LM). 

Figure 5 and 6 shows the regression analysis of the network output and the input for training, validation, 

testing, and overall dataset. The regression between the network input and the target function for RP and LM 

are 0.9704 and 0.9857 respectively. This shows that LM have better coefficient of regression which translates to 

better explaining power than RP; the explanatory power of LM is 2% greater than RP. Both learning algorithms 

showed that the ANN output are in close agreement with the actual HHV. 

 

Figure 5. Regression analysis for RP. 
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Figure 6. Regression analysis for LM. 

Table 4 presents the evaluation of the accuracy of the model based on RMSE, MAD, MAPE and CC. 

Both algorithms showed better performance with good coverage when tested and validated. However, the 

comparative analysis of their performance metrics showed that LM has lower RMSE (3.095), MAD (0.328) 

and higher CC (0.986), though at the expense of lower MAPE which is obtained in the case of RP algorithm. 

The improved MAPE value obtained based on RP may have benefitted from improved speed of convergence, 

less sensitivity to the training parameters [55] and minimum learning steps attributed to RP. 

To ensure the validity of the developed model, the statistical measures were compared for GP and MLR 

developed by Boumanchar et al [34]. A comparison with the GP with LM and RP shows that the CC is the 

same for RP but lesser than LM. Also, the RMSE observed in GP is lesser than RP and LM, though at the 

expense of CC. The MLR shows the highest RMSE and lowest CC of all the models reported. It is safe to 

conclude that both LM and RP algorithms can be used for the prediction of the HHV of MSW since the 

variation in their performance is low. 

Table 4. Evaluation indices for the models. 

Metrics RP LM GP [34] MLR [34] 

RMSE 3.587 3.095 2.865 4.3559 

MAD 2.409 0.328 - - 

MAPE (%) 21.680 22.483 - - 

CC 0.970 0.986 0.970 0.9459 
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Table 5. Experimental and predicted HHV based on different models. 

Experiment 
Deviation 

LM RP Shi etal [37] Meraz et al [33] Kathiravale et al [31] 

17.960 0.346 3.991 2.710 2.841 4.204 

17.400 0.126 0.305 1.770 1.607 3.177 

16.850 0.169 5.828 1.907 1.806 4.290 

16.050 0.008 12.480 3.134 3.107 3.391 

15.337 0.165 11.035 1.670 0.199 2.866 

14.663 0.028 3.326 2.272 2.091 2.092 

9.960 0.227 3.096 9.898 5.374 9.213 

9.780 0.208 8.362 10.026 8.142 10.106 

8.221 0.137 2.260 3.367 0.004 3.791 

6.030 0.013 1.477 5.025 0.672 6.105 

5.691 0.056 2.254 16.786 0.152 0.012 

3.970 0.862 1.640 15.111 0.008 17.572 

2.772 0.228 0.171 0.196 0.032 0.210 

1.416 0.086 0.025 1.292 1.395 0.960 

1.314 0.044 0.109 0.044 0.158 1.432 

0.779 0.015 0.083 0.107 0.016 0.005 

0.523 0.009 4.301 0.016 0.084 3.523 

0.437 0.052 0.172 0.084 0.017 2.698 

Also, the model developed in this study was further juxtaposed with the existing linear correlation from 

the literature. The comparison was only drawn with the correlations that used MSW as their dataset and based 

on this, Shi et al [37], Meraz et al [33], and Kathiravale et al [31] were selected. All the correlations were 

developed based on the data that was applied in this study to ensure the uniform condition. The deviation of the 

correlations from the actual experimental data and MLP-ANN model is shown in Table 5. The LM-based 

model shows the least deviation from the experimental results compared to the RP-based model. This may have 

been due to the inherent ability of the ANN model to learn the hidden patterns and adapt to non-linear 

distribution of the data, which is not the strength of linear regression. 

Conclusions 

The MSW ultimate analysis data with different sort of waste were applied to develop MLP-ANN model 

given the simplicity of this approach as only little calculation is required. This model was applied to predict the 

HHV of MSW as an avenue for waste to energy production. It was concluded that both LM and RP algorithms 

can be used for the prediction of the HHV of MSW, however, the LM-based model performs better than the 

RP-based model. This tool will be very useful in decision-making process for the designing of thermal 

conversion system and accelerate the MSW to energy conversion process. Further study will include the larger 

dataset with an ANN optimization, in order to further improve the robustness of the model. 
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