Citation: Svetlana Epshtein, Daria Gavrilova, Elena Kossovich, Valeria Nesterova, Izabella Nikitina, Sergey Fedorov. Technologies of coatings employment for coals oxidation resistance improvement[J]. AIMS Energy, 2019, 7(1): 20-30. doi: 10.3934/energy.2019.1.20
[1] | Chen S, Wang H, Li Y, et al. (2014) Theoretical and numerical analysis of coal dust separated by centrifugal force for working and heading faces. Int J Coal Sci Technol 1: 338–345. doi: 10.1007/s40789-014-0039-9 |
[2] | Colinet J, Listak JM, Organiscak JA, et al. (2010) Best practices for dust control in coal mining. Cent Dis Control Prevent 01: 17–36. |
[3] | Ji Y, Ren T, Wynne P, et al. (2015) A comparative study of dust control practices in Chinese and Australian longwall coal mines. Int J Min Sci Technol 26: 199–208. |
[4] | Jiang H, Du C, Dong J (2017) Investigation of rock cutting dust formation and suppression using water jets during mining. Powder Technol 307: 99–108. doi: 10.1016/j.powtec.2016.11.029 |
[5] | Kanjiyangat V, Hareendran M (2017) Coal dust exposure reduction using water mist system: A case study. J Chem Heal Saf 25: 1–5. |
[6] | Li Q, Lin B, Zhao S, et al. (2013) Surface physical properties and its effects on the wetting behaviors of respirable coal mine dust. Powder Technol 233: 137–145. doi: 10.1016/j.powtec.2012.08.023 |
[7] | Kollipara VK, Chugh YP, Mondal K (2014) Physical, mineralogical and wetting characteristics of dusts from Interior Basin coal mines. Int J Coal Geol 127: 75–87. doi: 10.1016/j.coal.2014.02.008 |
[8] | Zhou G, Fan T, Ma Y (2017) Preparation and chemical characterization of an environmentally-friendly coal dust cementing agent. J Chem Technol Biotechnol 92: 2699–2708. doi: 10.1002/jctb.5291 |
[9] | Naiguo W, Wen N, Weimin C, et al. (2014) Experiment and research of chemical de-dusting agent with spraying dust-settling. Procedia Eng 84: 764–769. doi: 10.1016/j.proeng.2014.10.494 |
[10] | Ding C, Nie B, Yang H, et al. (2011) Experimental research on optimization and coal dust suppression performance of magnetized surfactant solution. Procedia Eng 26: 1314–1321. doi: 10.1016/j.proeng.2011.11.2306 |
[11] | Xi Z, Feng Z, Li A (2017) Synergistic coal dust control using aqueous solutions of thermoplastic powder and anionic surfactant. Colloid Surface A 520: 864–871. doi: 10.1016/j.colsurfa.2017.02.072 |
[12] | Huang Q, Honaker R (2016) Recent trends in rock dust modifications for improved dispersion and coal dust explosion mitigation. J Loss Prevent Proc 41: 121–128. doi: 10.1016/j.jlp.2016.03.009 |
[13] | Zhou Q, Qin B, Ma D, et al. (2017) Novel technology for synergetic dust suppression using surfactant-magnetized water in underground coal mines. Process Saf Environ 109: 631–638. |
[14] | Fan T, Zhou G, Wang J (2018) Preparation and characterization of a wetting-agglomeration-based hybrid coal dust suppressant. Process Saf Environ 113: 282–291. doi: 10.1016/j.psep.2017.10.023 |
[15] | Yan W, Hoekman SK (2012) Dust Suppression with Glycerin from Biodiesel Production: A Review. J Environ Prot 3: 218–224. |
[16] | Wang D, Dou G, Zhong X, et al. (2014) An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel 117: 218–223. doi: 10.1016/j.fuel.2013.09.070 |
[17] | Wang G, Yan G, Zhang X, et al. (2016) Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine. J Loss Prevent Proc 44: 474–486. doi: 10.1016/j.jlp.2016.10.013 |
[18] | Cheng W, Hu X, Xie J, et al. (2017) An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties. Fuel 210: 826–835. doi: 10.1016/j.fuel.2017.09.007 |
[19] | Hu ZX, Hu XM, Cheng WM, et al. (2018) Performance optimization of one-component polyurethane healing agent for self-healing concrete. Constr Build Mater 179: 151–159. doi: 10.1016/j.conbuildmat.2018.05.199 |
[20] | AMS 1000. Chemical Dust Suppression for Coal, Metal and Cement Applications. Available from: http://almex.com/en/products/275/dust-suppression-system. |
[21] | Epshtein SA, Gavrilova DI, Kossovich EL, et al. (2016) Thermal methods exploitation for coals propensity to oxidation and self-ignition study. Gorn Zhurnal, 100–104. |
[22] | EPA (2009) Greenhouse Gas Monitoring Technologies. Available from: https://archive.epa.gov/nrmrl/archive-etv/web/pdf/p1005ku4.pdf. |
[23] | Kaminskii V, Kossovich E, Epshtein SA, et al. (2017) Activity of coals of different rank to ozone. AIMS Energy 5: 960–973. doi: 10.3934/energy.2017.6.960 |
[24] | Obvintseva LA, Sukhareva IP, Epshtein SA, et al. (2017) Interaction of coals with ozone at low concentrations. Solid Fuel Chem 51: 155–159. doi: 10.3103/S0361521917030077 |