Citation: Rocío Bayón, Esther Rojas. Feasibility study of D-mannitol as phase change material for thermal storage[J]. AIMS Energy, 2017, 5(3): 404-424. doi: 10.3934/energy.2017.3.404
[1] | Waschull J, Müller R, Römer S (2009) Investigation of phase change materials for elevated temperatures. Available from: http: //intraweb.stockton.edu/ eyos/energy_studies/ content/docs/ effstock09/posters/151.pdf. |
[2] | Sharma SD, Sagara K (2005) Latent heat storage materials and systems: a review. Int J Green Energy 2: 1–56. doi: 10.1081/GE-200051299 |
[3] | Kumaresan G, Velraj R, Iniyan S (2001) Thermal analysis of D-mannitol for use as phase change material for latent heat storage. J Appl Sci 11: 3044–3048. |
[4] | Lee JW, Thomas LC, Schmidt SJ (2011) Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose and fructose using a thermal analysis approach (Part I). J Agr Food Chem 59: 684–701. doi: 10.1021/jf1042344 |
[5] | Gallegos-Lazcano MA, Yu W (2014) Thermal performance and flammability of phase change material for medium and elevated temperatures for textile applications. J Therm AnalCalorim 117: 9–17. doi: 10.1007/s10973-013-3411-x |
[6] | Ye P, Byron T (2008) Characterization of D-mannitol by thermal analysis, FTIR and Raman spectroscopy. Amer Lab 40: 24–27. |
[7] | Burger A, Henck JO, Hetz S, et al. (2000) Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J Pharm Sci 89: 457–468. doi: 10.1002/(SICI)1520-6017(200004)89:4<457::AID-JPS3>3.0.CO;2-G |
[8] | Gombas A, Szabo-Revesz P, Regdon Jr G, et al. (2003). Study of thermal behaviour of sugar alcohols. J Therm Anal Calorim 73: 615–621. doi: 10.1023/A:1025490432142 |
[9] | Bruni G, Berbenni V, Milanese C, et al. (2009) Physico-chemical characterization of anhydrous D-mannitol. J Therm Anal Calorim 95: 871–876. doi: 10.1007/s10973-008-9384-5 |
[10] | Bayón R, Rojas E (2015) Characterization of organic PCMs for medium temperature storage. In: A Méndez-Vilas (Ed.), Materials and Technologies for Energy Efficiency, Brown Walker Press, Boca Ratón, Florida (US), 157–161. |
[11] | Solé A, Neumann H, Niedermaier S, et al. (2014) Stability of sugar alcohols as PCM for thermal energy storage. Sol Energ Mat Sol C 126: 125–134. doi: 10.1016/j.solmat.2014.03.020 |
[12] | Tournier R (2011) Thermodynamic origin of the vitreous transition. Materials 4: 869 –892. doi: 10.3390/ma4050869 |
[13] | Coultate TP (2002) Sugars, In: Food, the chemistry of its component. 4th Ed, Royal Society of Chemistry, Cambridge (UK), 30–32. |
[14] | Tomasik P, Palasinski M, Wiejak S (1989) The thermal de composition of carbohydrates. Part I. The decomposition of mono-,di-, and oligo-saccharides, In: R.S. Tipson, D. Horton (Eds), Advances in carbohydrate chemistry and biochemistry, Vol 47, Academic Press Inc., 203–278. |
[15] | Tong B, Liu RB, Meng CG, et al. (2010) Heat capacities and nonisothermal thermal decomposition reaction kinetics of D-mannitol. J Chem Eng Data 55: 119–124. doi: 10.1021/je900285w |
[16] | Anastasakis K, Ross AB, Jones JM (2011) Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel 90: 598–607. doi: 10.1016/j.fuel.2010.09.023 |
[17] | Sagara A, Nomura T, Tsubota M, et al. (2014) Improvement in thermal endurance of D-mannitol as phase change material (PCM) by impregnation into nanopores. Mater ChemPhys 146: 253–260. |
[18] | Šimon P (2011) Forty years of the Šesták-Berggren equation. ThermochimActa 520: 156–157. doi: 10.1016/j.tca.2011.03.030 |
[19] | Yamaguchi A, Sato O, Mimura N, et al. (2014) Intramolecular dehydration of mannitol in high-temperature liquid water without acid catalyst.RSC Adv 4: 45575–45578. |
[20] | Lee JW, Thomas LC, Jerrel J, et al. (2011) Schmidt, investigation of the thermal decomposition as the kinetic process that causes the loss of crystalline structure of sucrose using chemical analysis approach (Part II). J Agr Food Chem 59: 702–712. doi: 10.1021/jf104235d |
[21] | Wu CB, Wu G, Yang S, et al. (2014) Preparation of mannitol@silica core-shell capsules via an interfacial polymerization process from water–in–oil emulsion. Colloid Surface A 457: 487–494. doi: 10.1016/j.colsurfa.2014.06.018 |
[22] | Rodríguez-García MM, Bayón R, Rojas R (2016) Stability of D-mannitol upon melting/freezing cycles under controlled inert atmosphere. Energ Procedia 91: 218–225. doi: 10.1016/j.egypro.2016.06.207 |
[23] | Cunningham M, Dorée C (1917) Contributions to the Chemistry of Caramel. Payt I. Caramelan. J Chem Soc Trans 111: 589–608. |
[24] | Jiang B, Liu Y, Bhandari B, et al. (2008) Impact of caramelization on the glass transition temperature of several caramelized sugars. Part I: chemical analyses. J Agr Food Chem 56: 5138–5147. |
[25] | Singh F, Dean GR, Cantor SM (1948) The role of 5-(hydroxymethyl)-furfural in the discoloration of sugar solutions. J Am Chem Soc 70: 517–522. doi: 10.1021/ja01182a026 |
[26] | Miller RE, Cantor SM (1952) 2-hydroxyacetilfuran from sugars. J Am Chem Soc 74 (20): 5236–5237. |
[27] | Vis-UV spectrum of 4-methylpent-3-en-2-one (CAS-141-79-7). NIST Chemistry WebBook. Available from: http://webbook.nist.gov/chemistry, 2017. |
[28] | Oxidation of alcohols. Available from: http://www.chemguide.co.uk/organicprops/ alcohols/ oxidation.html, 2017. |
[29] | Alcohol oxidation. Available from: https://en.wikipedia.org/wiki/Alcohol_oxidation, 2017. |
[30] | Infrared spectra of trans-2-hexenal (CAS-6728-26-3); trans-2-methyl-2-butenal (CAS-497-03-0); 4-methylpent-3-en-2-one (CAS-141-79-7). NIST Chemistry WebBook. Available from: http://webbook.nist.gov/chemistry, 2017. |