By combining variational techniques with the saddle point theorem, we investigate the existence and nonexistence of periodic solutions to second-order partial difference equations involving p-Laplacians. Our obtained results generalize and complement some known ones. Finally, we display some examples and numerical simulations to show the validity of our main results.
Citation: Dan Li, Yuhua Long. On periodic solutions of second-order partial difference equations involving p-Laplacian[J]. Communications in Analysis and Mechanics, 2025, 17(1): 128-144. doi: 10.3934/cam.2025006
By combining variational techniques with the saddle point theorem, we investigate the existence and nonexistence of periodic solutions to second-order partial difference equations involving p-Laplacians. Our obtained results generalize and complement some known ones. Finally, we display some examples and numerical simulations to show the validity of our main results.
[1] | Y. C. Zhou, H. Cao, Y. N. Xiao, Difference Equations and Their Applications, Beijing, Science Press, 2014. |
[2] |
Y. H. Long, X. F. Pang, Q. Q. Zhang, Codimension-one and codimension-two bifurcations of a discrete Leslie-Gower type predator-prey model, Discrete Contin. Dyn. Syst. Ser. B, 30 (2025), 1357–1389. https://doi.org/10.3934/dcdsb.2024132 doi: 10.3934/dcdsb.2024132
![]() |
[3] |
Z. M. Guo, J. S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68 (2003), 419–430. https://doi.org/10.1112/S0024610703004563 doi: 10.1112/S0024610703004563
![]() |
[4] |
Z. M. Guo, J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A-Math., 46 (2003), 506–515. https://doi.org/10.1007/BF02884022 doi: 10.1007/BF02884022
![]() |
[5] |
M. J. Ma, Z. M. Guo, Homoclinic orbits and subharmonics for nonlinear second order difference equations, Nonlinear Anal., 67 (2007), 1737–1745. https://doi.org/10.1016/j.na.2006.08.014 doi: 10.1016/j.na.2006.08.014
![]() |
[6] |
Z. G. Wang, Q. Y. Li, Standing waves solutions for the discrete Schrödinger equations with resonance, Bull. Malays. Math. Sci. Soc., 46 (2023), 171. https://doi.org/10.1007/s40840-023-01530-1 doi: 10.1007/s40840-023-01530-1
![]() |
[7] |
T. S. He, W. G. Chen, Periodic solutions of second order discrete convex systems involving the p-Laplacian, Appl. Math. Comput., 206 (2008), 124–132. https://doi.org/10.1016/j.amc.2008.08.037 doi: 10.1016/j.amc.2008.08.037
![]() |
[8] |
Z. M. He, On the existence of positive solutions of p-Laplacian difference equations, J. Comput. Appl. Math., 161 (2003), 193–201. https://doi.org/10.1016/j.cam.2003.08.004 doi: 10.1016/j.cam.2003.08.004
![]() |
[9] |
X. Liu, H. P. Shi, Y. B. Zhang, Existence of periodic solutions of second order nonlinear p-Laplacian difference equations, Acta Math. Hungar., 133 (2011), 148–165. https://doi.org/10.1007/s10474-011-0137-8 doi: 10.1007/s10474-011-0137-8
![]() |
[10] |
J. H. Kuang, Existence of homoclinic solutions for higher-order periodic difference equations with p-Laplacian, J. Math. Anal. Appl., 417 (2014), 904–917. https://doi.org/10.1016/j.jmaa.2014.03.077 doi: 10.1016/j.jmaa.2014.03.077
![]() |
[11] |
P. Mei, Z. Zhou, Periodic and subharmonic solutions for a 2nth-order p-Laplacian difference equation containing both advances and retardations, Open Math., 16 (2018), 1435–1444. https://doi.org/10.1515/math-2018-0123 doi: 10.1515/math-2018-0123
![]() |
[12] |
Q. Li, V. D. Radulescu, W. Zhang, Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth, Nonlinearity, 37 (2024), 025018. https://doi.org/10.1088/1361-6544/ad1b8b doi: 10.1088/1361-6544/ad1b8b
![]() |
[13] |
N. S. Papageorgiou, J. Zhang, W. Zhang, Solutions with sign information for noncoercive double phase equations, J. Geom. Anal., 34 (2024), 14. https://doi.org/10.1007/s12220-023-01463-y doi: 10.1007/s12220-023-01463-y
![]() |
[14] |
D. Qin, X. Tang, J. Zhang, Ground states for planar Hamiltonian elliptic systems with critical exponential growth, J. Differential Equations, 308 (2022), 130–159. https://doi.org/10.1016/j.jde.2021.10.063 doi: 10.1016/j.jde.2021.10.063
![]() |
[15] |
Y. H. Long, Nontrivial solutions of discrete Kirchhoff type problems via Morse theory, Adv. Nonlinear Anal., 11 (2022), 1352–1364. https://doi.org/10.1515/anona-2022-0251 doi: 10.1515/anona-2022-0251
![]() |
[16] |
Y. H. Long, Multiple results on nontrivial solutions of discrete Kirchhoff type problems, J. Appl. Math. Comput., 69 (2023), 1–17. https://doi.org/10.1007/s12190-022-01731-0 doi: 10.1007/s12190-022-01731-0
![]() |
[17] |
Y. H. Long, Least energy sign-changing solutions for discrete Kirchhoff-type problems, Appl. Math. Lett., 150 (2024), 108968. https://doi.org/10.1016/j.aml.2023.108968 doi: 10.1016/j.aml.2023.108968
![]() |
[18] |
Y. H. Long, Q. Q. Zhang, Infinitely many large energy solutions to a class of nonlocal discrete elliptic boundary value problems, Comm. Pure Appl. Math., 22 (2023), 1545–1564. https://doi.org/10.3934/cpaa.2023037 doi: 10.3934/cpaa.2023037
![]() |
[19] |
Y. Bo, D. Tian, X. Liu, Y. F. Jin, Discrete maximum principle and energy stability of the compact difference scheme for two-dimensional Allen-Cahn equation, J. Funct. Spaces, 2022 (2022), 8522231. https://doi.org/10.1155/2022/8522231 doi: 10.1155/2022/8522231
![]() |
[20] |
M. A. Ragusa, A. Tachikawa, On some regularity results of minimizers of energy functionals, AIP Conference Proceedings, 637 (2014), 854–863. https://doi.org/10.1063/1.4904658 doi: 10.1063/1.4904658
![]() |
[21] |
F. Wu, Global energy conservation for distributional solutions to incompressible Hall-MHD equations without resistivity, Filomat, 37 (2023) 9741–9751. https://doi.org/10.2298/FIL2328741W doi: 10.2298/FIL2328741W
![]() |
[22] |
S. H. Wang, Z. Zhou, Periodic solutions for a second-order partial difference equation, J. Appl. Math. Comput., 69 (2023), 731–752. https://doi.org/10.1007/s12190-022-01769-0 doi: 10.1007/s12190-022-01769-0
![]() |
[23] |
H. T. He, M. Ousbika, Z. Allali, J. B. Zuo, Non-trivial solutions for a partial discrete Dirichlet nonlinear problem with $p$-Laplacian, Comm. Anal. Mech., 15 (2023), 598–610. https://doi.org/10.3934/cam.2023030 doi: 10.3934/cam.2023030
![]() |
[24] |
P. Mei, Z. Zhou, Homoclinic solutions for partial difference equations with mixed nonlinearities, J. Geom. Anal., 33 (2023), 117. https://doi.org/10.1007/s12220-022-01166-w doi: 10.1007/s12220-022-01166-w
![]() |
[25] |
Y. H. Long, On homoclinic solutions of nonlinear Laplacian partial difference equations with a parameter, Discrete Contin. Dyn. Syst. Ser. S, 17 (2024), 2489–2510. https://doi.org/10.3934/dcdss.2024005 doi: 10.3934/dcdss.2024005
![]() |
[26] | P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, 1986. https://doi.org/10.1090/cbms/065 |