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1. Introduction

Let Z, N, and R stand for the sets of integers, natural numbers and real numbers, respectively.
Consider the existence and nonexistence of periodic solutions of a partial difference equation in the
following form:

− 41

[
φp (41x(n − 1,m))

]
− 42

[
φp (42x(n,m − 1))

]
= f ((n,m), x(n,m)) , n,m ∈ Z. (1.1)

Here, 4i (i = 1, 2) represents the forward difference operator, and 41x(n − 1,m) = x(n,m) − x(n − 1,m),
42x(n,m − 1) = x(n,m) − x(n,m − 1). The p-Laplacian operator is defined as φp(x) = |x|p−2x for
1 < p < +∞ and x ∈ R. Given integers T1,T2 > 0, x = {x(n,m)} is (T1,T2)-periodic, which means
that x(n + T1,m) = x(n,m) = x(n,m + T2) for all (n,m) ∈ Z2. The nonlinearity f ∈ C(Z2 × R,R) is
T1-periodic in n and T2-periodic in m. Denote F ((n,m), x) =

∫ x

0
f ((n,m), s) ds for all (n,m) ∈ Z2.

Owing to both in our real life and scientific research, many phenomena and data are recorded with
discrete data; difference equations have a wide range of applications and a long research history in
various fields to describe discrete phenomena [1, 2]. With the popularization of computers and the rapid
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development of computer technology, the study of difference equation theory has made great progress
in various aspects since Guo and Yu [3] first applied the variational method to difference equations. For
example, the authors obtained periodic solutions [4], homoclinic solutions [5] of second-order difference
equations, and standing waves solutions [6] for the discrete Schrödinger equations. As to difference
equations involving p-Laplacians, here is a list of a few:

4(φp(4xn−1)) + f (n, xn) = 0, n ∈ Z, (1.2)

where 4xn = xn+1 − xn, is a special case of Equation (1.1). Results on periodic solutions and positive
solutions of (1.2) were given in [7] and [8], respectively. The authors [9] studied periodic solutions of

4(φp(4xn−1) + f (n, xn+1, xn, xn−1) = 0, n ∈ Z. (1.3)

As (1.3) is in higher-order, homoclinic solutions and periodic solutions were displayed in [10] and [11].
Nowadays, more and more phenomena need to be described by two or more multi-variables. Subse-

quently, both partial differential equations and partial difference equations, containing two or more than
two variables, have caught the keen attention of many scholars, and rich results have emerged. Here
mention a few; in [12–14], authors obtained a series of results for partial differential equations. Long
studied discrete Kirchhoff-type problems and obtained a series of results on multiple solutions [15, 16],
least energy solutions [17] and infinitely many large energy solutions [18] (see also [19–21] and ref-
erence therein). In [22], the authors gave results on periodic solutions for a second- order difference
equation. When partial difference equations contain p-Laplacian, multiple existence results were given
in [23]. As to homoclinic solutions, Mei and Zhou [24] gave results for partial difference equations with
mixed nonlinearities, and Long [25] considered nonlinear (p, q)-Laplacian partial difference equations
with a parameter λ > 0.

Motivated by the above mentioned results, we deal with periodic solutions of (1.1) by variational
techniques together with the saddle point theorem. To demonstrate the validity of our main results, we
also present some examples and numerical simulations. Our results generalize and complement some
known ones, as detailed in Remark 1.2.

Now we state our main results as follows:

Theorem 1.1. Assume the following suppositions are fulfilled.
(A1) There exists a constant M0 > 0 such that

| f ((n,m), x) |≤ M0, ∀ ((n,m), x) ∈ Z2 × R.

(A2)
lim
|x|→+∞

F((n,m), x) = +∞, ∀(n,m) ∈ Z2.

Then Equation (1.1) possesses at least a (T1,T2)-periodic solution.

Theorem 1.2. Let f satisfy
(A3) there exist positive constants R1 and α ( 2

p < α < 2) such that

0 < x f ((n,m), x) ≤
αp
2

F((n,m), x), ∀ (n,m) ∈ Z2 and | x |≥ R1;
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(A4) there exist positive constants b1, b2, and β ( 2
p < β ≤ α) such that

F((n,m), x) ≥ b1 | x |
βp
2 −b2, ∀ ((n,m), x) ∈ Z2 × R.

Then Equation (1.1) admits at least a (T1,T2)-periodic solution.

Remark 1.1. Substitute (A3) by
(A′3) there exist constants a1, a2 > 0 such that

F((n,m), x) ≤ a1 | x |
αp
2 +a2, ∀ ((n,m), x) ∈ Z2 × R.

The conclusion of Theorem 1.2 is still valid.
Further, to obtain nontrivial periodic solutions, we have

Theorem 1.3. Assume the following conditions hold
(A5) F((n,m), 0) = 0, ∀ (n,m) ∈ Z2;
(A6) there exists a constant 2

p < α < 2 such that

0 < x f ((n,m), x) ≤
αp
2

F((n,m), x), ∀ (n,m) ∈ Z2 and x , 0;

(A7) there exist constants b3 > 0 and 2
p < β ≤ α such that

F((n,m), x) ≥ b3 | x |
βp
2 , ∀ ((n,m), x) ∈ Z2 × R.

Then Equation (1.1) has at least one nontrivial (T1,T2)-periodic solution.

Theorem 1.4. Suppose (A1), (A2), and (A5) hold. Moreover,
(A8) there exist constants b4 > 0 and 0 < γ < 2 such that

F((n,m), x) ≥ b4 | x |
γp
2 , ∀ ((n,m), x) ∈ Z2 × R.

Then Equation (1.1) possesses at least one nontrivial (T1,T2)-periodic solution.

Theorem 1.5. If for all (n,m) ∈ Z2 and x , 0, there holds

x f ((n,m), x) < 0.

Then Equation (1.1) has no nontrivial (T1,T2)-periodic solution.

Remark 1.2. Our Theorems 1.1, 1.2, 1.3 and 1.4 are generalizations of Theorems 1.1, 1.2, 1.3, and
1.4 in [9], respectively. Moreover, Theorem 1.5 supplements the nonexistence of periodic solutions of
Equations (1.1) and (1.2).

The rest of this paper is organized as follows. In Section 2, we establish the variational framework
corresponding to Equation (1.1) and give some basic lemmas that play a vital role in proving our main
results. Section 3 presents detailed proofs of our main results. Finally, three examples and numerical
simulations are provided in Section 4.
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2. Preliminaries

For convenience, we give some notations. Denote Z(t, s) := {t, t + 1, · · · , s} with integers t ≤ s and
Ω := Z(1,T1) × Z(1,T2). Let

x = {x(n,m)}n,m∈Z = (· · · ; · · · , x(1, 0), x(2, 0), · · · ; · · · , x(1, 1), x(2, 1), · · · ; · · · ).

Define a T1T2-dimensional subspace E of vector space S = {x = {x(n,m)}|x(n,m) ∈ R, n,m ∈ Z} by

E = {x = {x(n,m)} ∈ S |x(n + T1,m) = x(n,m) = x(n,m + T2), n,m ∈ Z},

which is endowed with the inner product

〈x, y〉 =

T1∑
n=1

T2∑
m=1

x(n,m)y(n,m), ∀x, y ∈ E.

Thus, the induced norm ‖ · ‖ is

‖x‖ =

 T1∑
n=1

T2∑
m=1

|x(n,m)|2


1
2

, ∀x ∈ E,

and E is isomorphic to RT1T2 .
Write

‖x‖p =

 T1∑
n=1

T2∑
m=1

|x(n,m)|p


1
p

, ∀x ∈ E.

It follows that ‖x‖2 = ‖x‖ and there exist positive constants ζp and ξp with ζp

ξp
= (T1T2)

−|2−p|
2p such that

ζp‖x‖ ≤ ‖x‖p ≤ ξp‖x‖, ∀x ∈ E. (2.1)

Further, we have, for any x ∈ E, there exist positive constants C1, C2, C3 such that

C1‖x‖ αp
2
≤ ‖x‖ ≤ C2‖x‖ βp

2
, (2.2)

C1‖x‖ αp
2
≤ ‖x‖ ≤ C3‖x‖ γp

2
. (2.3)

Consider the associated functional I : E → R in the form as

I(x) = −
1
p

T1∑
n=1

T2∑
m=1

[|41x(n − 1,m)|p + |42x(n,m − 1)|p] +

T1∑
n=1

T2∑
m=1

F ((n,m), x(n,m)) . (2.4)

Then I is C1. Using periodic conditions, simple calculation yields that

∂I
∂x(n,m)

= 41

[
φp (41x(n − 1,m))

]
+ 42

[
φp (42x(n,m − 1))

]
+ f ((n,m), x(n,m)) ,

which means that Equation (1.1) is the corresponding Euler-Lagrange equation for I. Consequently,
we transform the problem to find (T1,T2)-periodic solutions of Equation (1.1) to the problem to seek
critical points of I in E.
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Identify x = {x(n,m)}n,m∈Z ∈ E with

x = (x(1, 1), · · · , x(T1, 1); x(1, 2), · · · , x(T1, 2); · · · ; x(1,T2), · · · , x(T1,T2))T ,

and write

x′ = Dx = (x(1, 1), · · · , x(1,T2); x(2, 1), · · · , x(2,T2); · · · ; x(T1, 1), · · · , x(T1,T2))T ,

where

D=

T1 2T1 (T2−1)T1+1



1 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 0 0 0 · · · 0 · · · 1 0 · · · 0 T2

0 1 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 0 1 · · · 0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 0 0 0 · · · 0 · · · 0 1 · · · 0 2T2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0 (T1−1)T2+1.
0 0 · · · 0 0 0 · · · 1 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 1

Then ‖x‖s = ‖x′‖s for all s > 1.
Let

Akl =


Bk 0

Bk
. . .

0 Bk


kl×kl

with

Bk =



2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 2 −1
−1 0 0 · · · −1 2


k×k

.

By [9], the eigenvalues of matrix AT1T2 are λi = 2(1 − cos 2iπ
T1

), i = 0, 1, 2, · · · ,T1 − 1. Thus λ0 = 0 and
λi > 0 for 1 ≤ i ≤ T1 − 1. Further, each λi is T2-multiple andλ = min{λ1, λ2, · · · , λT1−1} = 4 sin2 π

T1
,

λ = max{λ1, λ2, · · · , λT1−1} = 4 cos2 1−(−1)T1

4T1
π.

(2.5)

Communications in Analysis and Mechanics Volume 17, Issue 1, 128–144.



133

Similarly, AT2T1 has eigenvalues µ j (0 ≤ j ≤ T2 − 1) andµ = min{µ1, µ2, · · · , µT2−1} = 4 sin2 π
T2
,

µ = max{µ1, µ2, · · · , µT2−1} = 4 cos2 1−(−1)T2

4T2
π.

(2.6)

We split E as E = V ⊕ Y with Y = {y ∈ E|y = {c, c, · · · , c}, c ∈ R}. It follows that

T1∑
n=1

T2∑
m=1

|41x(n − 1,m)|p ≤ξp
pλ

p
2
‖x‖p, ∀x ∈ E,

T1∑
n=1

T2∑
m=1

|42x(n,m − 1)|p ≤ξp
pµ

p
2 ‖x′‖p = ξp

pµ
p
2 ‖x‖p, ∀x ∈ E,

(2.7)

and
T1∑

n=1

T2∑
m=1

|41x(n − 1,m)|p ≥ζ p
pλ

p
2 ‖x‖p, ∀x ∈ V,

T1∑
n=1

T2∑
m=1

|42x(n,m − 1)|p ≥ζ p
pµ

p
2 ‖x′‖p = ζ p

pµ
p
2 ‖x‖p, ∀x ∈ V.

(2.8)

Now, we state some basic definitions. Let X be a real Banach space. I ∈ C1 (X,R) satisfies the
Palais-Smale (P.S . for short) condition, which states that any sequence {xn} ⊂ X such that {I(xn)} is
bounded and lim

n→∞
I′ (xn)→ 0 possesses a convergent subsequence.

We denote by Bρ, the open ball with center 0 and radius ρ in X, and ∂Bρ its boundary. Recall the
Saddle Point Theorem, introduced in [26], which plays a crucial role in proofs of our main results.

Lemma 2.1. (Saddle Point Theorem [26]) Let X = X1 ⊕ X2 be a real Banach space with finite-
dimensional subspace X1 , {0}. Suppose I ∈ C1 (X,R) fulfills the P.S . condition and
(J1) I |∂Bρ∩X1≤ σ for constants σ and ρ > 0;
(J2) I |e+X2≥ ω for constants e ∈ Bρ ∩ X1 and ω > σ.
Then I admits a critical value c ≥ ω with

c = inf
h∈Γ

max
x∈Bρ∩X1

I(h(x)) and Γ =
{
h ∈ C(B̄ρ ∩ X1, X) | h |∂Bρ∩X1= id

}
.

3. Proofs of main results

In this section, we present detailed proofs of our main results.
Proof of Theorem 1.1 We complete the proof by Lemma 2.1 in three steps.
Step 1 I satisfies the P.S . condition on E.
Assume that {xk} ⊂ E is a P.S . sequence, that is, lim

k→∞
I′(xk) = 0 and there exists a constant M1 > 0

such that | I(xk) |≤ M1. Then for k large enough and any x ∈ E, we have

〈I′(xk), x〉 ≥ −‖x‖. (3.1)
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Take xk = vk + yk ∈ V ⊕ Y , it follows that

〈I′(xk), vk〉

=

T1∑
n=1

T2∑
m=1

{
41

[
φp (41xk(n − 1,m))

]
+ 42

[
φp (42xk(n,m − 1))

]
+ f ((n,m), xk(n,m))

}
· vk(n,m)

=

T1∑
n=1

T2∑
m=1

[
φp (41vk(n,m)) − φp (41vk(n − 1,m))

]
· vk(n,m)

+

T1∑
n=1

T2∑
m=1

[
φp (42vk(n,m)) − φp (42vk(n,m − 1))

]
· vk(n,m) +

T1∑
n=1

T2∑
m=1

f ((n,m), xk(n,m)) · vk(n,m)

=

T1∑
n=1

T2∑
m=1

[
φp (41vk(n − 1,m)) · vk(n − 1,m) − φp (41vk(n − 1,m)) · vk(n,m)

]
+

T1∑
n=1

T2∑
m=1

[
φp (42vk(n,m − 1)) · vk(n,m − 1) − φp (42vk(n,m − 1)) · vk(n,m)

]
+

T1∑
n=1

T2∑
m=1

f ((n,m), xk(n,m)) · vk(n,m)

= −

T1∑
n=1

T2∑
m=1

[
φp (41vk(n − 1,m)) · 41vk(n − 1,m) + φp (42vk(n,m − 1)) · 42vk(n,m − 1)

]
+

T1∑
n=1

T2∑
m=1

f ((n,m), xk(n,m)) · vk(n,m)

= −

T1∑
n=1

T2∑
m=1

[|41vk(n − 1,m)|p + |42vk(n,m − 1)|p] +

T1∑
n=1

T2∑
m=1

f ((n,m), xk(n,m)) · vk(n,m).

Together with (A1) and (3.1), we deduce that

T1∑
n=1

T2∑
m=1

[|41vk(n − 1,m)|p + |42vk(n,m − 1)|p]

≤

T1∑
n=1

T2∑
m=1

[
f ((n,m), xk(n,m)) · vk(n,m)

]
+ ‖vk‖

≤M0

T1∑
n=1

T2∑
m=1

| vk(n,m) | +‖vk‖

≤(M0

√
T1T2 + 1)‖vk‖.

(3.2)

By (2.8), we have

T1∑
n=1

T2∑
m=1

[|41vk(n − 1,m)|p + |42vk(n,m − 1)|p] ≥ ζ p
p

(
λ

p
2 + µ

p
2
)
‖vk‖

p. (3.3)
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Thus, combining (3.2) with (3.3), we obtain

ζ p
p

(
λ

p
2 + µ

p
2
)
‖vk‖

p ≤ (M0

√
T1T2 + 1)‖vk‖. (3.4)

Since p > 1, (3.4) ensures that ‖vk‖ has a maximum value. Thus, {vk} is a bounded sequence.
Next, we show that {yk} is also a bounded sequence. Owing to (A1), (2.7) and

M1 ≥I (xk) = −
1
p

T1∑
n=1

T2∑
m=1

[|41xk(n − 1,m)|p + |42xk(n,m − 1)|p] +

T1∑
n=1

T2∑
m=1

F ((n,m), xk(n,m))

= −
1
p

T1∑
n=1

T2∑
m=1

[|41vk(n − 1,m)|p + |42vk(n,m − 1)|p] +

T1∑
n=1

T2∑
m=1

F ((n,m), yk(n,m))

+

T∑
n=1

T1∑
m=1

[
F ((n,m), xk(n,m)) − F ((n,m), yk(n,m))

]
,

we attain that, for θ ∈ (0, 1), there holds
T1∑

n=1

T2∑
m=1

F ((n,m), yk(n,m))

≤M1 +
1
p

T1∑
n=1

T2∑
m=1

[|41vk(n − 1,m)|p + |42vk(n,m − 1)|p]

+

T1∑
n=1

T2∑
m=1

| F ((n,m), xk(n,m)) − F ((n,m), yk(n,m)) |

≤M1 +
ξ

p
p

p

(
λ

p
2 + µ

p
2

)
‖vk‖

p +

T1∑
n=1

T2∑
m=1

| f ((n,m), (yk + θvk)(n,m)) | · | vk(n,m) |

≤M1 +
ξ

p
p

p

(
λ

p
2 + µ

p
2

)
‖vk‖

p + M0

T1∑
n=1

T2∑
m=1

| vk(n,m) |

≤M1 +
ξ

p
p

p

(
λ

p
2 + µ

p
2

)
‖vk‖

p + M0

√
T1T2‖vk‖.

Notice that {vk} is bounded, then
{

T1∑
n=1

T2∑
m=1

F ((n,m), yk(n,m))
}

is bounded. We claim that {yk} is bounded.

Otherwise, we assume that lim
k→∞
‖yk‖ = ∞. Let yk = (ck, ck, · · · , ck)T ∈ Y where ck ∈ R, k ∈ N, then

‖yk‖ =

 T1∑
n=1

T2∑
m=1

| ck |
2


1
2

=
√

T1T2 | ck |→ +∞ as k → +∞.

In view of (A2),
F ((n,m), yk(n,m)) = F ((n,m), ck)→ +∞ as k → ∞.

Thus,
{

T1∑
n=1

T2∑
m=1

F ((n,m), yk(n,m))
}
→ +∞, which is a contradiction. Therefore, {yk} is bounded. Conse-

quently, {xk} ⊂ E is a bounded sequence on the finite-dimensional space E, and the P.S . condition is
verified.
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Step 2 (J1) of Lemma 2.1 is fulfilled.
From (A1), there exists a constant M′

0 > 0 such that

| F((n,m), z) |≤ M0 | z | +M′
0, ∀ ((n,m), z) ∈ Z2 × R.

Utilizing (2.8), for any v ∈ V , it follows that

I(v) = −
1
p

T1∑
n=1

T2∑
m=1

[|41v(n − 1,m)|p + |42v(n,m − 1)|p] +

T1∑
n=1

T2∑
m=1

F((n,m), v(n,m))

≤ −
ζ

p
p

p

(
λ

p
2 + µ

p
2
)
‖v‖p + M0

T1∑
n=1

T2∑
m=1

| v(n,m) | +M′
0T1T2

≤ −
ζ

p
p

p

(
λ

p
2 + µ

p
2
)
‖v‖p + M0

√
T1T2‖v‖ + M′

0T1T2

→−∞, as ‖v‖ → +∞.

Therefore, (J1) holds.
Step 3 (J2) of Lemma 2.1 is satisfied.
For any y ∈ Y , there is c ∈ R such that

y = (c, c, · · · , c)T .

Taking account of (A2), one gets that there exists a constant R0 > 0 such that F((n,m), x) > 0 for any
(n,m) ∈ Z2 and | x |> R0. Let

M2 = min
|x|≤R0

F((n,m), x), M′
2 = min{0,M2}.

Then
F((n,m), x) ≥ M′

2, ∀ ((n,m), x) ∈ Z2 × R.

Hence, we have

I(y) =

T1∑
n=1

T2∑
m=1

F((n,m), c) ≥ M′
2T1T2, ∀y ∈ Y,

which indicates that I satisfies (J2) of Lemma 2.1 with e = 0. Thus, the desired result follows.
Proof of Theorem 1.2 To prove Theorem 1.2 by Lemma 2.1, it is necessary to verify that I satisfies

the P.S . condition on E and the geometry conditions (J1) and (J2) of Lemma 2.1.
First, we testify that the P.S . condition is satisfied. Suppose {xk} ⊂ E and there is a constant M3 > 0

such that
lim
k→∞

I′(xk) = 0 and | I(xk) |≤ M3, ∀k ∈ N. (3.5)

Then for k is large enough, there holds

| 〈I′(xk), xk〉 |≤ ‖xk‖. (3.6)
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Recall

〈I′(xk), xk〉 = −

T1∑
n=1

T2∑
m=1

[|41xk(n − 1,m)|p + |42xk(n,m − 1)|p]

+

T1∑
n=1

T2∑
m=1

f ((n,m), xk(n,m)) · xk(n,m).

In combination with (3.5) and (3.6), we have

M3 +
1
p
‖xk‖ ≥ I(xk) −

1
p
〈I′(xk), xk〉

=

T1∑
n=1

T2∑
m=1

[
F((n,m), xk(n,m)) −

1
p

f ((n,m), xk(n,m)) · xk(n,m)
]
.

(3.7)

Write Ω = Ω1 ∪Ω2, where

Ω1 = {(n,m) ∈ Ω | |xk(n,m)| ≥ R1}, Ω2 = {(n,m) ∈ Ω | |xk(n,m)| < R1}. (3.8)

Then (3.7) and (A3) imply that

M3 +
1
p
‖xk‖ ≥

T1∑
n=1

T2∑
m=1

F((n,m), xk(n,m)) −
1
p

∑
(n,m)∈Ω1

f ((n,m), xk(n,m)) · xk(n,m)

−
1
p

∑
(n,m)∈Ω2

f ((n,m), xk(n,m)) · xk(n,m)

≥

T1∑
n=1

T2∑
m=1

F((n,m), xk(n,m)) −
α

2

∑
(n,m)∈Ω1

F((n,m), xk(n,m))

−
1
p

∑
(n,m)∈Ω2

f ((n,m), xk(n,m)) · xk(n,m)

=(1 −
α

2
)

T1∑
n=1

T2∑
m=1

F((n,m), xk(n,m))

+
1
p

∑
(n,m)∈Ω2

[
α

2
pF((n,m), xk(n,m)) − f ((n,m), xk(n,m)) · xk(n,m)

]
.

Moreover, α
2 pF((n,m), z) − f ((n,m), z) · z is continuous with respect to z, which means that there is a

constant M4 > 0 such that

α

2
pF((n,m), z) − f ((n,m), z) · z ≥ −M4, ∀(n,m) ∈ Z2 and | z |≤ R1.

Thus,

M3 +
1
p
‖xk‖ ≥ (1 −

α

2
)

T1∑
n=1

T2∑
m=1

F((n,m), xk(n,m)) −
1
p

T1T2M4. (3.9)
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By (A4) and (3.9), we achieve

M3 +
1
p
‖xk‖ ≥ (1 −

α

2
)b1

T1∑
n=1

T2∑
m=1

| xk(n,m) |
βp
2 −(1 −

α

2
)b2T1T2 −

1
p

T1T2M4

= (1 −
α

2
)b1

T1∑
n=1

T2∑
m=1

| xk(n,m) |
βp
2 −M5,

where M5 = (1 − α
2 )b2T1T2 + 1

pT1T2M4. Joint with (2.3), we obtain

M3 +
1
p
‖xk‖ ≥ (1 −

α

2
)b1C

βp
2

2 ‖xk‖
βp
2 − M5,

that is,

(1 −
α

2
)b1C

βp
2

2 ‖xk‖
βp
2 −

1
p
‖xk‖ ≤ M3 + M5. (3.10)

Remind 2
p < β ≤ α < 2, (3.10) guarantees {xk} is bounded. Since E is finite dimensional, the P.S .

condition is satisfied.
Second, we complete the proof by verifying that I satisfies the geometry conditions (J1) and (J2) of

Lemma 2.1. For any y = (c, c, · · · , c) ∈ Y with c ∈ R, (A4) means that

I(y) =

T1∑
n=1

T2∑
m=1

F((n,m), y(n,m)) ≥ b1

T1∑
n=1

T2∑
m=1

| y(n,m) |
βp
2 −b2T1T2

= b1T1T2 | c |
βp
2 −b2T1T2 =: ω0.

For any v ∈ V , (A′3), (2.2) and (2.8) yield

I(v) = −
1
p

T1∑
n=1

T2∑
m=1

[|41v(n − 1,m)|p + |42v(n,m − 1)|p] +

T1∑
n=1

T2∑
m=1

F((n,m), v(n,m))

≤ −
ζ

p
p

p

(
λ

p
2 + µ

p
2
)
‖v‖p + a1

T1∑
n=1

T2∑
m=1

| v(n,m) |
αp
2 +a2T1T2

≤ −
ζ

p
p

p

(
λ

p
2 + µ

p
2
)
‖v‖p + a1C

αp
2

1 ‖v‖
αp
2 + a2T1T2.

(3.11)

Notice that 2
p < α < 2, (3.11) indicates that there is a constant ρ0 > 0 large enough such that

I(v) ≤ ω0 − 1 < ω0, ∀v ∈ V, ‖v‖ = ρ0.

Thus, both (J1) and (J2) are satisfied. Therefore, Lemma 2.1 ensures that Equation (1.1) possesses at
least a (T1,T2)-periodic solution. The proof is completed.

Proof of Theorem 1.3 To obtain nontrivial solutions, we divide the proof of Theorem 1.3 in four
steps.

Step 1 I satisfies the P.S . condition on E.
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Let sequence {xk} ⊂ E such that

lim
k→∞

I′(xk) = 0, | I(xk) |≤ M6, ∀k ∈ N,

where M6 > 0 is a constant. For k large enough, one obtains

| 〈I′(xk), xk〉 |≤ ‖xk‖.

Moreover,

〈I′(xk), xk〉 = −

T1∑
n=1

T2∑
m=1

[|41xk(n − 1,m)|p + |42xk(n,m − 1)|p]

+

T1∑
n=1

T2∑
m=1

f ((n,m), xk(n,m)) · xk(n,m).

Together with (2.3), (A6) and (A7), it follows that

M6 +
1
p
‖xk‖ ≥ I(xk) −

1
p
〈I′(xk), xk〉

=

T1∑
n=1

T2∑
m=1

[
F((n,m), xk(n,m)) −

1
p

f ((n,m), xk(n,m)) · xk(n,m)
]

≥

T1∑
n=1

T2∑
m=1

[
F((n,m), xk(n,m)) −

α

2
F ((n,m), xk(n,m))

]
= (1 −

α

2
)

T1∑
n=1

T2∑
m=1

F((n,m), xk(n,m))

≥ (1 −
α

2
)b3

T1∑
n=1

T2∑
m=1

| xk(n,m) |
βp
2

≥ (1 −
α

2
)b3C

βp
2

2 ‖xk‖
βp
2 .

Namely,

(1 −
α

2
)b3C

βp
2

2 ‖xk‖
βp
2 −

1
p
‖xk‖ ≤ M6. (3.12)

Recall 2
p < β ≤ α < 2, (3.12) implies that {xk} is a bounded sequence. Due to the fact that E is a

finite-dimensional space, then I satisfies the P.S . condition.
Step 2 I meets (J1) of Lemma 2.1.
For any v ∈ V , (3.11) gives

I(v) ≤ −
ζ

p
p

p

(
λ

p
2 + µ

p
2
)
‖v‖p + a1C

αp
2

1 ‖v‖
αp
2 + a2T1T2 → −∞ as ‖v‖ → +∞.

Therefore, (J1) of Lemma 2.1 is satisfied.
Step 3 I fulfills (J2) of Lemma 2.1.
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Given x = v0 + y with v0 ∈ V and y ∈ Y , from (A7), (2.3), and (2.7), we have that

I(x) = −
1
p

T1∑
n=1

T2∑
m=1

[|41x(n − 1,m)|p + |42x(n,m − 1)|p] +

T1∑
n=1

T2∑
m=1

F((n,m), x(n,m))

≥ −
ξ

p
p

p

(
λ

p
2 + µ

p
2

)
‖v0‖

p + b3

T1∑
n=1

T2∑
m=1

| (v0 + y)(n,m) |
βp
2

≥ −
ξ

p
p

p

(
λ

p
2 + µ

p
2

)
‖v0‖

p + b3C
βp
2

2 ‖v0‖
βp
2 + b3C

βp
2

2 ‖y‖
βp
2 ,

which means that there is a sufficiently small positive constant δ1 satisfying

I(v0 + y) ≥ δ
βp
2

1

(
b3C

βp
2

2 −
ξ

p
p

p

(
λ

p
2 + µ

p
2

)
δ

p− βp
2

1

)
:= ω1 > 0,

for v0 ∈ ∂Bδ1 ∩ V and y ∈ Y . Then (J2) is valid.
Step 4 I has a nontrivial critical point.
Applying the saddle point theorem, we find a critical value c ≥ ω1 > 0 of I. Let x̄ ∈ E be the

corresponding critical point, that is,
I(x̄) = c ≥ ω1 > 0. (3.13)

Further, x̄ is a nontrivial critical point, that is, x̄ , 0. Or else, if x̄ = 0, by (A5), we have

I(x̄) =

T1∑
n=1

T2∑
m=1

F((n,m), 0) = 0.

This contradicts (3.13). Hence, x̄ , 0 and the proof is completed.
Proof of Theorem 1.4 From the proof of Theorem 1.1, we know that (A1) and (A2) ensure that the

P.S . condition and (J1) of Lemma 2.1 are valid. Then we only need to prove that (J2) of Lemma 2.1
also holds.

Taking x = v0 + y, where v0 ∈ V and y ∈ Y , by (A8), (2.3) and (2.8), we obtain

I(x) = −
1
p

T1∑
n=1

T2∑
m=1

[|41x(n − 1,m)|p + |42x(n,m − 1)|p] +

T1∑
n=1

T2∑
m=1

F((n,m), x(n,m))

= −
1
p

T1∑
n=1

T2∑
m=1

[|41v0(n − 1,m)|p + |42v0(n,m − 1)|p] +

T1∑
n=1

T2∑
m=1

F((n,m), (v0 + y)(n,m))

≥ −
ξ

p
p

p

(
λ

p
2 + µ

p
2

)
‖v0‖

p + b4

T1∑
n=1

T2∑
m=1

| (v0 + y)(n,m) |
γp
2

≥ −
ξ

p
p

p

(
λ

p
2 + µ

p
2

)
‖v0‖

p + b4C
γp
2

3 ‖v0‖
γp
2 + b4C

γp
2

3 ‖y‖
γp
2 ,

which means that, for v0 ∈ ∂Bδ2 ∩ V and any y ∈ Y , there exists a sufficiently small constant δ2 > 0 such
that

I(v0 + y) ≥ δ
γp
2

2

(
b4C

γp
2

3 −
ξ

p
p

p

(
λ

p
2 + µ

p
2

)
δ

p− γp
2

2

)
:= ω2 > 0.
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Thus (J2) is verified. Therefore, Lemma 2.1 means that I admits a critical value c ≥ ω2 > 0. Denote the
corresponding critical point by x̄, that is, I(x̄) = c > 0. With (A5), we get

I(0) =

T1∑
n=1

T2∑
m=1

F((n,m), 0) = 0,

which implies that x̄ , 0. Thus our proof is done.
Proof of Theorem 1.5 For the sake of contradiction, we assume that x∗ is a nontrivial (T1,T2)-

periodic solution of Equation (1.1), which is equivalent to the fact that x∗ is a nontrivial critical point of
I on E. Hence, I′(x∗) = 0 with x∗ , 0. Direct computation gives that

〈I′(x), x〉 = −

T1∑
n=1

T2∑
m=1

[|41x(n − 1,m)|p + |42x(n,m − 1)|p]

+

T1∑
n=1

T2∑
m=1

f ((n,m), x(n,m)) · x(n,m).

Therefore,

T1∑
n=1

T2∑
m=1

f ((n,m), x∗(n,m)) · x∗(n,m) =

T1∑
n=1

T2∑
m=1

[|41x∗(n − 1,m)|p + |42x∗(n,m − 1)|p] ≥ 0. (3.14)

On the other hand, (A9) gives

T1∑
n=1

T2∑
m=1

f ((n,m), x∗(n,m)) · x∗(n,m) < 0.

This is in conflict with (3.14). Consequently, the proof is finished.

4. Examples

We give three examples to illustrate applications of our main results. Write

Ē = {x = {x(n,m)} ∈ S |x(n + 2,m) = x(n,m) = x(n,m + 2), n,m ∈ Z}.

To facilitate the presentation of numerical simulations, we abbreviate x ∈ Ē as

x = (x(1, 1), x(2, 1), x(1, 2), x(2, 2)).

Example 4.1. Take T1 = T2 = 2 and p = 3. Consider

41
[
φ3 (41x(n − 1,m))

]
+ 42

[
φ3 (42x(n,m − 1))

]
+

16x(n,m)
1 + x2(n,m)

= 0, n,m ∈ Z. (4.1)

Here
f ((n,m), x) =

16x
1 + x2 , x ∈ R.
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By integration, it yields
F((n,m), x) = 8 ln(1 + x2), x ∈ R.

Direct calculations give

| f ((n,m), x) |=|
16x

1 + x2 |≤ 8, lim
|x|→+∞

F((n,m), x) = +∞.

Thus, Equation (4.1) fulfills all the assumptions of Theorem 1.1, which guarantees that Equation (4.1)
has at least a (2, 2)-periodic solution. Use Matlab; a solution x ∈ Ē of Equation (4.1) is presented as

x = (1,−1, 1,−1).

Example 4.2. Take p = 3 and T1 = T2 = 2. Consider

41
[
φ3 (41x(n − 1,m))

]
+ 42

[
φ3 (42x(n,m − 1))

]
+ 4x(n,m) = 0, n,m ∈ Z. (4.2)

Here
f ((n,m), x) = 4x, x ∈ R,

then
F((n,m), x) = 2x2, x ∈ R.

Take α = 4
3 and β = 4

3 , then (A3) and (A4) of Theorem 1.2 hold. Thus, Equation (4.2) has at least a
(2, 2)-periodic solution.

Further, we know that F((n,m), 0) = 0 for any n,m ∈ Z. Thus, (A5), (A6), and (A7) of Theorem
1.3 are also true. Thereby, it can be further confirmed that Equation (4.2) holds at least one nontrivial
(2, 2)-periodic solution. We list a solution x ∈ Ē of Equation (4.2) as follows:

x = (
1
2
,−

1
2
,

1
2
,−

1
2

).

Example 4.3. Consider Equation (1.1) with f ((n,m), x) = −x. Then Equation (1.1) turns into

41
[
φ3 (41x(n − 1,m))

]
+ 42

[
φ3 (42x(n,m − 1))

]
− x(n,m) = 0. (4.3)

It is clear that the condition (A9) of Theorem 1.5 is valid. Therefore, Equation (4.3) has no nontrivial
(T1,T2)-periodic solution.
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