Research article Special Issues

Reduction in optimal control with broken symmetry for collision and obstacle avoidance of multi-agent system on Lie groups

  • Received: 11 November 2022 Revised: 16 January 2023 Accepted: 28 January 2023 Published: 03 March 2023
  • 70G45, 70H03, 70H05, 37J15, 49J15

  • We study the reduction by symmetry for optimality conditions in optimal control problems of left-invariant affine multi-agent control systems, with partial symmetry breaking cost functions for continuous-time and discrete-time systems. We recast the optimal control problem as a constrained variational problem with a partial symmetry breaking Lagrangian and obtain the reduced optimality conditions from a reduced variational principle via symmetry reduction techniques in both settings continuous-time, and discrete-time. We apply the results to a collision and obstacle avoidance problem for multiple vehicles evolving on $ SE(2) $ in the presence of a static obstacle.

    Citation: Efstratios Stratoglou, Alexandre Anahory Simoes, Leonardo J. Colombo. Reduction in optimal control with broken symmetry for collision and obstacle avoidance of multi-agent system on Lie groups[J]. Communications in Analysis and Mechanics, 2023, 15(2): 1-23. doi: 10.3934/cam.2023001

    Related Papers:

  • We study the reduction by symmetry for optimality conditions in optimal control problems of left-invariant affine multi-agent control systems, with partial symmetry breaking cost functions for continuous-time and discrete-time systems. We recast the optimal control problem as a constrained variational problem with a partial symmetry breaking Lagrangian and obtain the reduced optimality conditions from a reduced variational principle via symmetry reduction techniques in both settings continuous-time, and discrete-time. We apply the results to a collision and obstacle avoidance problem for multiple vehicles evolving on $ SE(2) $ in the presence of a static obstacle.



    加载中


    [1] A. M. Bloch, D. E. Chang, N. E. Leonard, J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems. Ⅱ. Potential shaping, IEEE. T. Automat. Contr., 46 (2001), 1556–1571. https://doi.org/10.1109/9.956051 doi: 10.1109/9.956051
    [2] S. Bonnabel, P. M. Silvere, P. Rouchon, Symmetry-preserving observers. IEEE. T. Automat. Contr., 53 (2008), 2514–2526. https://doi.org/10.1109/TAC.2008.2006929 doi: 10.1109/TAC.2008.2006929
    [3] C. Contreras, T. Ohsawa, Controlled Lagrangians and stabilization of Euler–Poincaré mechanical systems with broken symmetry Ⅱ: potential shaping, Math. Control. Signal., 2021.
    [4] A. Echeverría-Enríquez, J. Marín-Solano, M. C. Munoz-Lecanda, N. Román-Roy, Geometric Reduction in optimal control theory with symmetries, Rep. Math. Phys., 52 (2003), 89–113. https://doi.org/10.1016/S0034-4877(03)90006-1 doi: 10.1016/S0034-4877(03)90006-1
    [5] A. S. R. Ferreira, C. Meissen, M. Arcak, A. Packard, Symmetry reduction for performance certification of interconnected systems, IEEE. T. Control. Netw., 5 (2017), 525–535.
    [6] J. W. Grizzle, S. I. Marcus, The structure of nonlinear control systems possessing symmetries, IEEE. Trans. Auto. Control., 30 (1985), 248–258. https://doi.org/10.1109/TAC.1985.1103927 doi: 10.1109/TAC.1985.1103927
    [7] A. Khosravian, J. Trumpf, R. Mahony, T. Hamel, State estimation for invariant systems on lie groups with delayed output measurements, Automatica, 68 (2016), 254–265. https://doi.org/10.1016/j.automatica.2016.01.024 doi: 10.1016/j.automatica.2016.01.024
    [8] C. Lageman, J. Trumpf, R. Mahony, Gradient-like observers for invariant dynamics on a Lie group, IEEE. T. Automat. Contr., 55 (2010), 367–377. https://doi.org/10.1109/TAC.2009.2034937 doi: 10.1109/TAC.2009.2034937
    [9] M. de León, J. Cortés, D. Martín de Diego, S. Martínez, General symmetries in optimal control, Rep. Math. Phys., 53 (2004), 55–78. https://doi.org/10.1016/S0034-4877(04)90004-3 doi: 10.1016/S0034-4877(04)90004-3
    [10] R. Mahony, T. Hamel, J. M. Pflimlin, Non-linear complementary filters on the special orthogonal group, IEEE. T. Automat. Contr., 53 (2008), 1203–1218. https://doi.org/10.1109/TAC.2008.923738 doi: 10.1109/TAC.2008.923738
    [11] A. J. van der Schaft, Symmetries and conservation laws for hamiltonian systems with inputs and outputs: A generalization of Noether's theorem, Sys. Contr. Lett., 1 (1981), 108–115. https://doi.org/10.1016/S0167-6911(81)80046-1 doi: 10.1016/S0167-6911(81)80046-1
    [12] A. Saccon, J. Hauser, A. P. Aguiar, Optimal control on Lie groups: The projection operator approach, IEEE. T. Automat. Contr., 58 (2013), 2230–2245. https://doi.org/10.1109/TAC.2013.2258817 doi: 10.1109/TAC.2013.2258817
    [13] A. Sarlette, S. Bonnabel, R. Sepulchre, Coordinated motion design on lie groups, IEEE. T. Automat. Contr., 55 (2010), 1047–1058. https://doi.org/10.1109/TAC.2010.2042003 doi: 10.1109/TAC.2010.2042003
    [14] V. Jurdjevic, Geometric control theory, Cambridge University, 1997. https://doi.org/10.1017/CBO9780511530036
    [15] A. M. Bloch, Nonholonomic mechanics and control, Springer-Verlag New York, 2015. https://doi.org/10.1007/978-1-4939-3017-3
    [16] L. Colombo, D. V. Dimarogonas, Symmetry Reduction in Optimal Control of Multiagent Systems on Lie Groups, in IEEE Transactions on Automatic Control, 65 (2020), 4973–4980. https://doi.org/10.1109/TAC.2020.3004795
    [17] W. S. Koon, J. E. Marsden, Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction, Siam. J. Control. Optim., 35 (1997), 901–929. https://doi.org/10.1137/S0363012995290367 doi: 10.1137/S0363012995290367
    [18] P. S. Krishnaprasad, Optimal Control and Poisson Reduction, Technical Report T.R. 93–87, Institute for Systems Research, University of Maryland, College Park, MD, 1993.
    [19] T. Ohsawa, Symmetry reduction of optimal control systems and principal connections, Siam. J. Control. Optim., 51 (2012), 96–120. https://doi.org/10.1137/110835219 doi: 10.1137/110835219
    [20] T. Ohsawa, Poisson Reduction of Optimal Control Systems, 50th IEEE Conference on Decision and Control and European Control Conference, 2011. https://doi.org/10.1109/CDC.2011.6161027
    [21] N. Leonard, P. Krishnaprasad, Motion control of drift-free, left-invariant systems on lie groups, IEEE. T. Automat. Contr., 40 (1995), 1539–1554. https://doi.org/10.1109/9.412625 doi: 10.1109/9.412625
    [22] E. Stratoglou, L. Colombo, T. Ohsawa, Optimal Control with Broken Symmetry of Multi-Agent Systems on Lie Groups. arXiv preprint arXiv: 2204.06050, 2022.
    [23] C. Vasile, M. Schwager, C. Belta, SE(N) invariance in networked systems, In 2015 European Control Conference, 186–191, 2015. https://doi.org/10.1109/ECC.2015.7330544
    [24] E. Justh, P. Krishnaprasad, Optimality, reduction and collective motion, Proc. R. Soc. A., 471 (2015), 20140606. https://doi.org/10.1098/rspa.2014.0606 doi: 10.1098/rspa.2014.0606
    [25] C. Vasile, M. Schwager, C. Belta, Translational and rotational invariance in networked dynamical systems, IEEE. T. Control. Netw., 5 (2017), 822–832. https://doi.org/10.1109/TCNS.2017.2648499 doi: 10.1109/TCNS.2017.2648499
    [26] A. M. Bloch, L. J. Colombo, R. Gupta, T. Ohsawa, Optimal control problems with symmetry breaking cost functions, Siam. J. Appl. Algebr. G., 1 (2017), 626–646. https://doi.org/10.1137/16M1091654 doi: 10.1137/16M1091654
    [27] C. Contreras, T. Ohsawa, Stabilization of Mechanical Systems on Semidirect Product Lie Groups with Broken Symmetry via Controlled Lagrangians, IFAC-PapersOnLine, 54 (2021), 106–112. https://doi.org/10.1016/j.ifacol.2021.11.063 doi: 10.1016/j.ifacol.2021.11.063
    [28] F. Gay-Balmaz, T. S. Ratiu, Clebsch optimal control formulation in mechanics, J. Geom. Mech., 3 (2011), 41–79. https://doi.org/10.3934/jgm.2011.3.41 doi: 10.3934/jgm.2011.3.41
    [29] F. Gay-Balmaz, Cesare Tronci, Reduction theory for symmetry breaking with applications to nematic systems, Physica. D., 239 (2010), 1929–1947. https://doi.org/10.1016/j.physd.2010.07.002 doi: 10.1016/j.physd.2010.07.002
    [30] D. Holm, J. E. Marsden, T. S. Ratiu, The Euler-Poincaré equations and semidirect products with application to continuum theories, Adv. Math., 137 (1998), 1–81. https://doi.org/10.1006/aima.1998.1721 doi: 10.1006/aima.1998.1721
    [31] J. E. Marsden, T. S. Ratiu, A. Weinstein, Reduction and Hamiltonian structures on duals of semidirect product Lie algebras, Cont. Math. AMS., 28 (1984), 55–100.
    [32] J. Marsden, T. Ratiu, A. Weinstein, Semidirect products and reduction in mechanics, Trans. Amer. Math. Soc., 281 (1984), 147–177. https://doi.org/10.1090/S0002-9947-1984-0719663-1 doi: 10.1090/S0002-9947-1984-0719663-1
    [33] D. Holm, T. Schmah, C. Stoica, Geometric mechanics and symmetry, Oxford University Press, 2009.
    [34] J. Marsden, T. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, 1999. https://doi.org/10.1007/978-0-387-21792-5
    [35] D. Holm, Geometric Mechanics, Part Ⅱ, Imperial College Press, 2008. https://doi.org/10.1142/p549
    [36] R. Olfati-Saber, R. M. Murray, Distributed cooperative control of multiple vehicle formations using structural potential functions, IFAC world congress, 15 (2002), 242–248.
    [37] A. W. Knapp, Lie Groups Beyond an Introduction, Birkhauser Boston, Boston, 2002.
    [38] N. Bou-Rabee, J. E. Marsden, Hamilton–Pontryagin integrators on Lie groups part I: Introduction and structure-preserving properties, Found. Comput. Math., 9 (2009), 197–219. https://doi.org/10.1007/s10208-008-9030-4 doi: 10.1007/s10208-008-9030-4
    [39] M. Kobilarov, J. Marsden, Discrete geometric optimal control on Lie groups, IEEE. T. Robot., 27 (2011), 641–655. https://doi.org/10.1109/TRO.2011.2139130 doi: 10.1109/TRO.2011.2139130
    [40] J. Marsden, S. Pekarsky, S. Shkoller, Discrete Euler-Poincaré and lie-poisson equations, Nonlinearity, 12 (1999), 1647. https://doi.org/10.1088/0951-7715/12/6/314 doi: 10.1088/0951-7715/12/6/314
    [41] J. Marsden, M. West, Discrete Mechanics and variational integrators, Acta, Numerica, , 10 (2001), 357–514. https://doi.org/10.1017/S096249290100006X doi: 10.1017/S096249290100006X
    [42] A. Borum, T. Bretl, Reduction of sufficient conditions for optimal control problems with subgroup symmetry, IEEE. T. Automat. Contr., 62 (2017), 3209–3224. https://doi.org/10.1109/TAC.2016.2628638 doi: 10.1109/TAC.2016.2628638
    [43] J. Goodman, L. Colombo, Collision Avoidance of Multiagent Systems on Riemannian Manifolds, Siam. J. Control. Optim., 60 (2022), 168–188. https://doi.org/10.1137/21M1411056 doi: 10.1137/21M1411056
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1450) PDF downloads(169) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog