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1. Introduction

Symmetries linked to Lie groups appear naturally in many control systems problems [1–13]. Numer-
ical integrators evolving on Lie groups are commonly employed to improve its accuracy, as well as to
avoid singularities by working with coordinate-free expressions in the Lie algebra associated to the Lie
group, on which the system evolves. Typical tasks include trajectory tracking and estimation algorithms
for the pose of mechanical systems.

Optimization problems on Lie groups [14] have applications in control engineering. Indeed, there are
many examples of robotic systems that possess invariant quantities steaming from existing symmetries.
Invariant quantities can be used as leverage to reduce the complexity of the equations, by projecting
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them into lower dimensional spaces. Techniques taking advantage of symmetries have been studied
in [15–20], among many others, mainly for applications in robotic and aerospace engineering and,
in particular, for spacecraft attitude control and underwater vehicles [21]. Most of the applications
provided in the literature focus on the single-agent situation and only a few works explore symmetry
reduction in a multi-agent scenario (see for instance [22–25]). In this work, we employ symmetry
reduction to study optimal control problems with broken symmetry for multi-agent systems on Lie
groups, while agents avoid collisions and obstacles in the configuration space.

In [26], the authors studied symmetry reduction in optimal control problems with broken symmetry
for single-agent systems. In this work, we advance on the results of [26] by considering a multi-agent
scenario. Hence, a generalization of the previous variational principle and reduction by symmetries
performance are needed. The results in this paper are the Lagrangian/variational counterpart of those
in [22]; we also develop a discrete-time version of the results. At the continuous-time side, we obtain the
Euler–Poincaré equations from a constrained variational principle while after discretizing the variational
principle in time, we obtain the discrete-time Lie–Poisson equations.

The approach in this work to obtain the reduced optimality conditions is a generalization of the one
followed in [26], and is as follows. First, we consider a collection of free agents evolving on a Lie
group G and an artificial potential V0, used to prevent collisions with a fixed obstacle, which is not
symmetry invariant. At the same time, we consider a representation of G on a dual vector space W∗

and a graph G to describe interactions between neighboring agents. Though the artificial potential is
not symmetry invariant, the interaction between neighbouring agents is, which is the standard situation
when the interaction is done through a potential dependent on relative positions. Coupling the artificial
potential a parameter depending on vectors in W∗, we obtain a symmetry invariant potential function
under the action of G. Loosely speaking, the agents are coupled with vectors in W∗ that are acted by
the representation. The associated action considered at this stage restores the full Lie group symmetry
in the cost function from our optimal control problem and allows us to apply the semi-direct product
reduction theory [3, 27–32], to obtain the corresponding Euler-Poincaré system on the semi-direct
product Lie algebra g n W∗ at each node. This gives rise to a new system that finds no analogs in
classical reduced-order models in optimal control of mechanical systems.

The paper is organized as follows, in Section 2, we introduce some preliminaries about geometric
mechanics on Lie groups and Lie group actions. In Section 3.1, we present the problem together
with a motivating example. In Section 4, we study the Euler–Poincaré reduction of optimal control
problems for left-invariant multi-agent control systems on Lie groups with partial symmetry breaking
cost functions. Furthermore, we consider the discrete-time framework and obtain the discrete-time
Lie–Poisson equations in Section 5. In Section 6, an example is considered to illustrate the theory.
Finally, some concluding remarks are given in Section 7.

2. Lie group actions and representations

Consider a manifold Q to be the configuration space of a mechanical system and let it be differentiable
of dimension d which can be described locally by coordinates q = (q1, . . . , qd). Denote by T Q the
tangent bundle of Q, with local coordinates described by positions and velocities for the system,
vq = (q1, . . . , qd, q̇1, . . . , q̇d) ∈ T Q with dim(T Q) = 2d. Let T ∗Q be its cotangent bundle, locally
described by the positions and the momenta for the system, i.e., (q, p) ∈ T ∗Q with dim(T ∗Q) = 2d.
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The tangent space at q ∈ Q has a vector space structure, and it is denoted as TqQ. The cotangent
space at q ∈ Q is just the dual space of TqQ and is denoted as T ∗q Q. The dynamics of a mechanical
system is described by the equations of motion determined by a Lagrangian function L : T Q → R
given by L(q, q̇) = K(q, q̇) − V(q), where K : T Q→ R denotes the kinetic energy and V : Q→ R the
potential energy of the system. The equations of motion are given by the Euler-Lagrange equations
d
dt

(
∂L
∂q̇i

)
=
∂L
∂qi , i = 1, . . . , d, which determine a system of second-order differential equations. In case,

the configuration space of the system is a Lie group, Euler-Lagrange equations can be reduced to a
system of first-order ordinary differential equations.

Definition 2.1. Let G be a Lie group and Q a smooth manifold. A left-action of G on Q is a smooth map
Φ : G × Q→ Q, such that Φ(ē, g) = g and Φ(h,Φ(g, q)) = Φ(hg, q) for all g, h ∈ G and q ∈ Q, where ē
is the identity of the group G and the map Φg : Q→ Q given by Φg(q) = Φ(g, q) is a diffeomorphism
for all g ∈ G.

Definition 2.2. A function f : Q→ R is called left invariant under Φg if f ◦ Φg = f for any g ∈ G.

For a finite dimensional Lie group G, its Lie algebra g is defined as the tangent space to G at the
identity, g := TēG. Let Lg : G → G be the left translation of the element g ∈ G given by Lg(h) = gh,
where h ∈ G. Lg is a diffeomorphism on G and a left-action of G on G [33]. Its tangent map (i.e, the
linearization or tangent lift) is denoted by ThLg : ThG → TghG. In a similar way, the cotangent map
(cotangent lift), is denoted by (ThLg)∗, and is defined as the dual map of the tangent lift denoted by
T ∗h Lg : T ∗ghG → T ∗hG, and determined by the relation 〈(ThLg)∗(αgh), yh〉 = 〈αgh, (ThLg)yh〉, yh ∈ ThG,
αgh ∈ T ∗ghG. As it is known, the tangent and cotangent lift of a Lie group action are Lie group actions
as well. Here, 〈·, ·〉 : W∗ ×W → R with W a finite-dimensional vector space denotes the usual natural
pairing between vectors and co-vectors, and defined by 〈y, x〉 := y · x for y ∈ W∗ and x ∈ W. For a
matrix Lie algebra 〈y, x〉 = yT x (see [33], Section 2.3). Using the natural pairing between vectors and
co-vectors, for g, h ∈ G, y ∈ g∗ and x ∈ g, we write 〈T ∗g Lg−1(y),TēLg(x)〉 = 〈y, x〉.

Denote by ad∗ : g × g∗ → g∗, (ξ, µ) 7→ ad∗ξµ the co-adjoint operator, defined by 〈ad∗ξµ, η〉 = 〈µ, adξη〉
for all η ∈ g, where the ad : g × g→ g denotes the adjoint operator on g given by the Lie-bracket, i.e.,
adξη = [ξ, η], ξ, η ∈ g. We also define the adjoint action of G on g, denoted by Adg : g→ g and, in the
case the Lie algebra is a matrix Lie group, it is given by Adgχ := gχg−1, where χ ∈ g, and the co-adjoint
action of G on g∗, denoted by Ad∗g : g∗ → g∗, and given by 〈Ad∗gα, ξ〉 = 〈α,Adgξ〉 with α ∈ g∗.

For q ∈ Q, the isotropy (or stabilizer or symmetry) group of Φ at q is given by Gq := {g ∈ G|Φg(q) =

q} ⊂ G. Since the map Φ(·, q) = Φq : G → Q is a continuous, Gq = (Φq)−1(q) is a closed subgroup, and
thus, a Lie subgroup of G (see [34] Sec. 9.3 for instance).

Example 1. Consider the special Euclidean group S E(2) of rotations and translations on the plane.
Elements on S E(2) can be expressed by transformations of R2 of the form z 7→ Rz + r, with r ∈ R2

and R ∈ S O(2). This transformation can be represented by g = (R, r), for R =

(
cos θ − sin θ
sin θ cos θ

)
and

r = [x, y]T . The composition law is (R, r) · (S , s) = (RS ,Rs + r) with identity element (I, 0) and inverse
(R, r)−1 = (R−1,−R−1r). Under this composition rule, S E(2) has the structure of the semidirect product
Lie group S O(2) n R2. Here, as usual in the literature, we denote by n the semidirect product of Lie
groups.

The Lie algebra se(2) of S E(2) is determined by

Communications in Analysis and Mechanics Volume 15, Issue 2, 1–23.



4

se(2) =
{ ( A b

0 0

) ∣∣∣∣A ∈ so(2) ' R, b ∈ R2
}
. In the following, for simplicity, we write A = −aJ, a ∈ R,

where J =

(
0 1
−1 0

)
. Therefore, we denote ξ = (a, b) ∈ se(2). The adjoint action of S E(2) on se(2) is

given by Ad(R,r)(a, b) = (a, aJr +Rb) (see [35], pp. 153 for instance), so, Ad(R,r)−1(a, b) = (a,RT (b−aJr)).

Next, we provide the infinitesimal description of a Lie group action, that will be an important concept
in the remainder of the paper.

Definition 2.3. Given a Lie group action Φ : G × Q → Q, for ξ ∈ g, the map Φexp(tξ) : Q → Q is
a flow on Q, where exp is the exponential map of G. The corresponding vector field on Q, given by
ξQ(q) := d

dt |t=0 Φexp(tξ)(q) is called the infinitesimal generator of the action corresponding to ξ.

Definition 2.4. Let us denote the set of vector fields on a Lie group G by X(G). A left invariant vector
field is an element X of X(G) such that ThLg(X(h)) = X(Lg(h)) = X(gh) ∀ g, h ∈ G.

Especially, for h = ē, we have that a vector field X is left-invariant if X(g) = TēLgξ for ξ = X(ē) ∈ g.
As a consequence, left invariant vector fields are identified with its corresponding element of g. Thus,
for every g ∈ G and ξ ∈ g, we define the left-invariant vector field as ξ(g) := TēLg(ξ).

Example 2. Consider the Euclidean Lie group Rn with the sum as group operation. For all g ∈ Rn, the
left translation Lg is the usual translation on Rn, that is, Lg(h) = g + h, h ∈ Rn. So that, the tangent
map to Lg is the identity map on Rn, that is, T0Lg = idT0Rn , where we are using that ThR

n ' Rn for all
h ∈ Rn, since Rn is a vector space. Therefore, left-invariant vector fields are constant vector fields, that
is, X = v1

∂
∂x1

+ . . . + vn
∂
∂xn

for v = (v1, . . . , vn) ∈ T0R
n and x = (x1, . . . , xn) ∈ Rn.

Consider a Lie group G, a vector space W and the representation of G on W, given by ρ : G×W → W,
(g, v) 7→ ρg(v), which is a left action, and it is defined by the relation ρg1(ρg2(v)) = ρg1g2(v), g1, g2 ∈ G.
Its dual is given by ρ∗ : G ×W∗ → W∗, (g, α) 7→ ρ∗g−1(α), satisfying 〈ρ∗g−1(α), v〉 = 〈α, ρg−1(v)〉, and it is
also a left action of G now on W∗.

The infinitesimal generator of the left action of G on W is ρ′ : g × W → W, (ξ, v) 7→
ρ′(ξ, v) = d

dt |t=0ρexp (tξ)(v). For every v ∈ W, consider the linear transformation ρ′v : g → W,
ξ 7→ ρ′v(ξ) = ρ′(ξ, v) and its dual ρ′∗v : W∗ → g∗, α 7→ ρ′∗v (α). The last transformation defines
the momentum map JW : W × W∗ → g∗, (v, α) 7→ JW(v, α) := ρ′∗v (α), such that for every ξ ∈ g,
〈JW(v, α), ξ〉 = 〈ρ′∗v (α), ξ〉 = 〈α, ρ′v(ξ)〉 = 〈α, ρ′(ξ, v)〉.

For ξ ∈ g, consider the map ρ′ξ : W → W, v 7→ ρ′ξ(v) = ρ′(ξ, v) and its dual
ρ′∗ξ : W∗ → W∗, α 7→ ρ′∗ξ (α), such that 〈ρ′∗ξ (α), v〉 = 〈α, ρ′ξ(v)〉. Then, this satisfies
〈JW(v, α), ξ〉 = 〈α, ρ′(ξ, v)〉 = 〈α, ρ′ξ(v)〉 = 〈ρ′∗ξ (α), v〉. See [33] and [34] for more details on the mo-
mentum map.

Example 3. Let W = g and ρ the adjoint representation of G on W, i.e., ρg = Adg, for any g ∈ G. So,
for α ∈ W∗ = g∗, ρ∗ is the coadjoint representation of G on W∗, i.e., ρ∗g = Ad∗g. We also have that the
infinitesimal generator for the adjoint representation is ρ′ξ = adξ for any ξ ∈ W (see [33], Def. 6.4, pp.
225), and it follows that 〈JW(x, α), ξ〉 = 〈α, adξx〉 = 〈α,−adxξ〉 = 〈−ad∗xα, ξ〉, for x ∈ W = g, which
gives JW(x, α) = −ad∗xα.

Similarly, if now W = g∗ and the coadjoint representation of G on W is ρ, i.e., ρg = Ad∗g−1 , for
any g ∈ G, then ρ′ξ = −ad∗ξ for any ξ ∈ g. So, if x, ξ ∈ g and α ∈ g∗, it follows that 〈JW(α, x), ξ〉 =

〈−ad∗ξα, x〉 = 〈α, adxξ〉 = 〈ad∗xα, ξ〉, which gives JW(α, x) = ad∗xα.
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3. Problem formulation

3.1. Left-invariant multi-agent control systems

Denote, by N , a set consisting of s ≥ 2 free agents, and by E ⊂ N × N the set describing
the interaction between them. The neighboring relationships are illustrated by an undirected graph
G = (N ,E), where N is the set of vertices and E the set of edges for G. We further assume G is static
and connected. For every agent i ∈ N the set Ni = { j ∈ N : (i, j) ∈ E} denotes the neighbors of that
agent. The agent i ∈ N evolves on an n-dimensional Lie group G, and its configuration is denoted by
gi ∈ G. We denote by Gs and by TeGs =: gs the cartesian products of s copies of G and g, respectively,
where e = (e, e, . . . , e) is the identity of Gs, and e the identity element of G.

For each agent i ∈ N , there is an associated left-invariant control system described by the kinematic
equations

ġi = TeLgi(ui), gi(0) = g0
i , (3.1)

where gi(t) ∈ C1([0,T ],G), T ∈ R fixed, ui ∈ g is the control input and gi
0 ∈ G is considered as the

initial state condition. Letting dim g = n, we can have as many basis for the Lie algebra as the number of
agents. Thus, for each i ∈ N , we have g = span{e1, e2, . . . , en} and the control inputs may be described
by coordinates ui = [u1

i , u
2
i , . . . , u

m
i ]T , where ui(t) ∈ C1([0,T ], g), with m ≤ n. Hence, the control input

for each agent is given by ui(t) = ei
0 +

m∑
k=1

uk
i (t)ek, where ei

0 ∈ g. Thus, the left-invariant control systems

(3.1) for each agent i ∈ N can be written as

ġi(t) = gi(t)
(
e0 +

m∑
k=1

uk
i (t)ek

)
, gi(0) = g0

i . (3.2)

Note that the class of control systems described by (3.2) belongs to the family of underactuated
control systems.

3.2. Motivating example

Following with Example 1, consider the agents i ∈ N and j ∈ Ni represented as gk = (Rk, rk),
k ∈ {i, j}. Note that g−1

i g j = (RT
i R j,−RT

i (ri− r j)), then, Adg−1
i g j

(1, 0) = (1, JRT
i (r j− ri)). The inner product

on se(2) is given by 〈ξ1, ξ2〉 = tr(ξT
1 ξ2) for ξ1, ξ2 ∈ se(2) and, hence, the norm is given by ||ξ|| =

√
tr(ξTξ),

for any ξ ∈ se(2). For ξ = (a, b) ∈ se(2) we can write the norm of ξ as ||(a, b)|| =
√

2a2 + bT b. Therefore,
||Adg−1

i g j
(1, 0)||2 = 2 + |JRT

i (r j − ri)|2 = 2 + |r j − ri|
2, where we have used that R, J ∈ S O(2) for the last

equality. Hence, it follows that |ri − r j| =
√
||Adg−1

i g j
(1, 0)||2 − 2.

The previous computation shows that, if the interaction between agents is determined by a function
depending on the distances between them, that is, Vi j : G ×G → R, is such that Vi j(gi, g j) = V(|ri − r j|)
for some V : R≥0 → R; then, Vi j is S E(2)-invariant, that is Vi j(hgi, hg j) = Vi j(gi, g j). An alternative
reasoning of this invariance property has been shown in [36].

Next, suppose that we wish to write the distance from an arbitrary point r ∈ R2 to a fixed point
x0 ∈ R

2 in terms of the adjoint action. Consider ξ0 = (1, Jx0) ∈ se(2). Then, for any (R, r) ∈ S E(2),
we have Ad(R,r)−1(1, Jx0) = (1,RT J(x0 − r)), and, therefore, ||Ad(R,r)−1(1, Jx0)||2 = 2 + |x0 − r|2. Next,
assume we have an obstacle avoidance function V0

i : S E(2) → R for each agent i ∈ N which can be
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written as V0
i (Ri, ri) = V(|ri|) with V : R≥0 → R. Note that under this assumption, V may be chosen

arbitrarily. Then, V0
i is not S E(2)-invariant, but it is S O(2) invariant, i.e., V0

i (R0Ri, ri) = V0
i (Ri, ri)

for any R0 ∈ S O(2). Note also that S O(2) is the isotropy group for the coadjoint action, that is,
S O(2) ' {g ∈ S E(2) | Adg(ξ0) = ξ0}, therefore, the obstacle avoidance potential functions V0

i are
invariant under the left action of the isotropy group.

In this situation, one can redefine the potential function V0
i to make it S E(2)-invariant as fol-

lows. Consider x0 = 0, so, ξ0 = (R0, x0) = (−J, 0) ∈ se(2), and ‖Ad(Ri,ri)−1ξ0‖ = 2 + |ri|
2. Hence,

V0
i (Ri, ri) = V(|ri|) = V

(√
||Ad(Ri,ri)−1ξ0||

2 − 2
)
. This gives a motivation to define an extended obstacle

avoidance function Vext
i,0 : GnW∗ → Rwith GnW∗ = S E(2)nse(2) as Vext

i,0 (gi, ξ) := V
(√
||Adg−1

i
ξ||2 − 2

)
.

Note that the extended obstacle avoidance function possesses an S E(2)-symmetry (i.e., Vext
i,0 is

invariant under a left action of S E(2)) since Vext
i,0 ◦ Φ̃(h, (g, ξ)) = Vext

i,0 (Lhg,Adhξ) = Vext
i,0 (g, ξ), for any

h ∈ S E(2), with left action Φ̃ given by

Φ̃ : S E(2) × (S E(2) × se(2))→ S E(2) × se(2), (3.3)
(h, (g, ξ)) 7→ (Lh(g),Adh(ξ)).

3.3. Problem setting

The problem under study consists on finding reduced necessary conditions for optimality in an
optimal control problem for (3.1) (or equivalently (3.2)). These solution curves should minimize a
cost function and prevent collisions among agents, while they should also avoid static obstacles in the
workspace.

Problem (collision and obstacle avoidance): Find reduced optimality conditions on g(t) =

(g1(t), . . . , gs(t)) ∈ Gs and the controls u(t) = (u1(t), . . . , us(t)) ∈ gs avoiding collision among the
agents and obstacles (which will be defined shortly) in the workspace, and such that (g(t), u(t)) ∈ Gs × gs

minimize the following cost function,

min
(g,u)

s∑
i=1

∫ T

0

(
Ci(gi(t), ui(t)) + V0

i (gi) +
1
2

∑
j∈Ni

Vi j(gi(t), g j(t))
)
dt, (3.4)

subject to the kinematics ġi(t) = Tei Lgi(t)(ui(t)), boundary conditions g(0) = (g1(0), . . . , gn(0)) =

(g0
1, . . . , g

0
s) and g(T ) = (g1(T ), . . . , gs(T )) = (gT

1 , . . . , g
T
s ) with T ∈ R+ the final time, and under the

following assumptions:

(i) There is a left representation ρ of G on a vector space V .
(ii) Ci : G × g→ R are G-invariant functions for each i ∈ N (under a left action of G on G × g, which

is given below) and are also differentiable almost everywhere.
(iii) Vi j : G × G → R (collision avoidance potential functions) satisfying Vi j = V ji are G-invariant

functions under Φ, defined by

Φ : G × (G ×G) −→ G ×G, (3.5)
(g, (g1, g2)) 7−→ (Lg(g1), Lg(g2)),

i.e., Vi j ◦ Φg = Vi j, for any g ∈ G, that is, Vi j(Lg(gi), Lg(g j)) = Vi j(gi, g j), for any (gi, g j) ∈ E,
j ∈ Ni and they are also differentiable almost everywhere.

Communications in Analysis and Mechanics Volume 15, Issue 2, 1–23.
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(iv) V0
i : G → R (obstacle avoidance potential functions) are not G-invariant functions and they are

also differentiables almost everywhere, for i ∈ N .
(v) The obstacle avoidance functions V0

i depend on a parameter α0 ∈ W∗. Hence, we can define the
extended potential function as Vext

i,0 : G ×W∗ → R, with Vext
i,0 (·, α0) = V0

i , by making the parameter
evolve - due to the group action - with initial value α0.

(vi) The extended obstacle avoidance functions are G-invariant under Φ̃, defined by

Φ̃ : G × (G ×W∗) −→ G ×W∗, (3.6)
(g, (h, α)) 7−→ (Lg(h), ρ∗g−1(α)),

where ρ∗g−1 ∈ W∗ is the adjoint of ρg−1 ∈ W, i.e., Vext
i,0 ◦ Φ̃g = Vext

i,0 , for any g ∈ G, or
Vext

i,0 (Lg(h), ρ∗g−1(α)) = Vext
i,0 (g, α) where α ∈ W∗.

(vii) The obstacle avoidance potential functions are invariant under the left action of the isotropy group

Gα0 = {g ∈ G | ρ∗g(α0) = α0}. (3.7)

Note that G × g is a trivial vector bundle over G and, in order to respect assumption (ii), we define
the left action of G on G × g as follows,

Ψ : G × (G × g) −→ (G × g),
(g, (h, u)) 7−→ (Lg(h), u). (3.8)

We further assume that each Ci : G × g → R is G-invariant under (3.8), i.e., Ci ◦ Ψg = Ci, for any
g ∈ G. In addition, each agent i ∈ N occupies a disk of radius r on G. This radius is consider to be small
enough in order that all agents can be packed on G and, hence the potential functions are well defined
and feasible for d(gi(t), g j(t)) > 2r for all t, where d(·, ·) : G ×G → R denotes a distance function on G.

4. Euler-Poincaré reduction for optimal control with broken symmetries

We next study reduced optimality conditions for extrema for the OCP. We address the problem as a
constrained variational problem and obtain the Euler-Poincaré equations that extremal must satisfy in
Theorem 4.1 and Proposition 4.2.

The optimal control problem (3.4) can be resolved as a constrained variational problem by utilizing
the Lagrangian multipliers λgi = T ∗gi

Lg−1
i

(λi) ∈ T ∗gi
G, where λi ∈ C1([0,T ], g∗) into the cost functional.

Let {e1, . . . , em, em+1, . . . , en} be a basis of g∗ dual of the basis {ei} of g. Then λi =

n∑
k=m+1

λi
ke

k, where

λi
k are the components of the vector λi in the given basis of the Lie algebra g. Thus, we define the

Lagrangian L : Gs × gs × (T ∗gi
G)s → R by

L(g, u, λ) =

s∑
i=1

[
Ci(gi(t), ui(t)) + 〈λgi ,Tei Lgiui〉 + V0

i (gi(t)) + Vi(g)
]
, (4.1)

where Vi : Gs → R,

Vi(g) =
1
2

∑
j∈Ni

Vi j(gi(t), g j(t))
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By assumption (v), the obstacle avoidance potential functions V0
i : G → R depend on a parameter

α0 ∈ W∗, so we can extend them to Vext
i,0 : G ×W∗ → R by making the parameter evolve under the Lie

group action with α(0) = α0, and, therefore, we can consider the extended Lagrangian function on
Gs × gs × (T ∗gi

G)s ×W∗,

Lext(g, u, λ, α) =

s∑
i=1

[
Ci(gi(t), ui(t)) + 〈λgi ,Tei Lgiui〉 + Vext

i,0 (gi, αi) + Vi(g)
]

where Lext(g, u, λ, α0) = L(g, u, λ).
By assumptions (i) to (iv), and by taking advantage of the G-invariance of Ci, Vext

i,0 and Vi j (and so
Vi), we can define the reduced extended Lagrangian ` : Gs−1 × gs × (g∗)s ×W∗ → R by

`(g, u, λ, α) =

s∑
i=1

[
Ci(ui) + 〈λi, ui〉 + Vext

i,0 (e, αi) + Vi(g)
]
,

defining g1 to be the identity ē1 on G. This is equivalent to consider the Lagrangian L̃ext(h, u, λ, α) =

Lext(ē1, h, u, λ, α) with h ∈ Gs−1. Then `(g, u, λ, α) is obtained by considering a left action in each term
of the sum. In fact, if Li

ext is each term in the sum from 1 to s in the definition of Lext, then

`(g, u, λ, α) =

n∑
i=1

Li
ext(Lg−1

i
g, u,T ∗gi

Lg−1
i
λgi , αi)

under the assumption that g1 = ē1 and αi = ρ∗gi
(α). Note here the slight abuse of notation regarding the

positions g. In the definition of the reduced Lagrangian g ∈ Gs−1, while in that of the Lagrangian Lext,
g ∈ Gs.

Theorem 4.1. For s ≥ 2, an extremal for the OCP (3.4) satisfies the following Euler-Poincaré equations

d
dt

(∂Ci

∂ui
+ λi

)
= ad∗ui

(∂Ci

∂ui
+ λi

)
+ JW

(∂Vext
i,0

∂αi
, αi

)
+ Θi

1

s∑
k=1

T ∗e Lgi

(
∂Vk

∂gi

)
, (4.2)

α̇i = ρ′∗ui
(αi), αi(0) = ρ∗g0

i
(α0), (4.3)

where JW : T ∗W ' W ×W∗ → g∗ is the momentum map that corresponds to the left action of G on
W, and it is defined through the left representation ρ of G on W, and where Θi

1 = 0 if i = 1, otherwise
Θi

1 = 1.

Proof. Consider the variational equation

δ

∫ T

0
Lext(g(t), u(t), λ(t), α)dt = 0,

which holds for variations of g, that vanish at the endpoints, and u. Also, consider the constrained
variational equation

δ

∫ T

0
`(g(t), u(t), λ(t), α(t))dt = 0, (4.4)
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that holds for variations of ui and αi with δui = η̇i + aduiηi and δαi = ρ′∗ηi
(αi), where ηi is a path of gs that

vanishes at the endpoints, i.e. ηi(0) = ηi(T ) = 0.
The two variational equations are equivalent since the cost functions Ci and the extended potential

functions Vext
i,0 are G-invariant, i.e. Ci ◦Ψg, Vext

i,0 ◦ Φ̃ = Vext
i,0 and 〈λgi ,Tēi Lgiui〉 = 〈T ∗gi

Lg−1
i
λgi , ui〉 = 〈λi, ui〉.

The variations δgi of gi induce and are induced by variations δui = η̇i + aduiηi with ηi(0) = ηi(T ) = 0,
where ηi = Tgi L

−1
gi

(δgi) and δui = Tgi Lg−1
i

(ġi). Variations of αi are given by δαi = ρ′∗ηi
(αi). Thus, we have

δ

∫ T

0
`(g, u, λ, α)dt =

s∑
i=1

∫ T

0

〈∂Ci

∂ui
, δui

〉
+ 〈λi, δui〉

+
〈∂Vext

i,0

∂αi
, δαi

〉
+

s∑
k=2

〈∂Vi

∂gk
, δgk

〉
dt.

(4.5)

Using the variations of ui, which are given by δui = η̇i + aduiηi, applying integration by parts and by
the definition of the co-adjoint action the first two terms, yield:∫ T

0

〈
−

d
dt

(∂Ci

∂ui
+ λi

)
+ ad∗ui

(∂Ci

∂ui
+ λi

)
, ηi

〉
dt.

From the variations δαi = ρ′∗ηi
(αi), the third term gives

〈∂Vext
i,0

∂αi
, δαi

〉
=

〈∂Vext
i,0

∂αi
, ρ′∗ηi

(αi)
〉

=
〈
αi, ρ

′
ηi

(∂Vext
i,0

∂αi

)〉
=

〈
JW

(∂Vext
i,0

∂αi
, αi

)
, ηi

〉
.

Taking into account that T (Lgi ◦ Lg−1
i

) = T Lgi ◦ T Lg−1
i

is equivalent to the identity map on TGi and
ηi = Tgi Lg−1

i
(δgi), the fourth term can be written as

s∑
k=2

〈∂Vi

∂gk
, δgk

〉
=

s∑
k=2

〈∂Vi

∂gk
, (TeLgk ◦ Tgk Lg−1

k
)(δgk)

〉
=

s∑
k=2

〈∂Vi

∂gk
,TeLgk(ηk)

〉
=

s∑
k=2

〈
T ∗e Lgk

(
∂Vi

∂gk

)
, ηk

〉
.

Therefore, after performing a change of variables between indexes i and k in the fourth term, the
above variational equation (4.4) yields

d
dt

(∂Ci

∂ui
+ λi

)
=ad∗ui

(∂Ci

∂ui
+ λi

)
+ JW

(∂Vext
i,0

∂αi
, αi

)
.

for i = 1. Otherwise,

d
dt

(∂Ci

∂ui
+ λi

)
= ad∗ui

(∂Ci

∂ui
+ λi

)
+ JW

(∂Vext
i,0

∂αi
, αi

)
+

s∑
k=1

T ∗e Lgi

(
∂Vk

∂gi

)
.

Finally, by taking the time derivative of αi = ρgi(α0), we have α̇i = ρ′∗ui
(αi), together with α(0) =

ρ∗
gi

0
(αi

0).
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Note that the above Euler-Poincaré equations (4.2) cannot, in fact, describe the motion properly
because there are more unknowns than equations. In particular, observe that equations (4.2) together
with (3.1) (or equivalently (3.2)), give rise to only two equations for the three unknown variables ui, λi

and gi. However, we provide an additional structure to the Lie algebra, g, that allows one to decouple
equations (4.2) into two equations. The next Proposition describes this process.

Proposition 4.2. If the structure of the Lie algebra permits a decomposition g = r ⊕ s where r =

span{e1, . . . , em} and s = span{em+1, . . . , en} such that

[s, s] ⊆ s, [s, r] ⊆ r, [r, r] ⊆ s, (4.6)

then the Euler-Poincaré equations of motion (4.2) are given by the following equations:

d
dt
∂Ci

∂ui
=ad∗ui

λi + JW

(∂Vext
i,0

∂αi
, αi

)∣∣∣∣∣
r

+ Θi
1

s∑
k=1

T ∗e Lgi

(
∂Vk

∂gi

)∣∣∣∣∣
r

,

λ̇i =ad∗ui

∂Ci

∂ui
+ JW

(∂Vext
i,0

∂αi
, αi

)∣∣∣∣∣
s

+ Θi
1

s∑
k=1

T ∗e Lgi

(
∂Vk

∂gi

)∣∣∣∣∣
s

,

(4.7)

where ui ∈ r and the restrictions
∣∣∣
r

and
∣∣∣
s

give the projection onto r∗ and s∗, respectively, with respect to
the associated splitting of the dual space g∗ = r∗ ⊕ s∗.

Remark 4. Note that this is the case for semisimple Lie algebras, they admit a Cartan decomposition,
i.e., if g is semisimple, then g = r ⊕ s such that [r, r] ⊆ s, [s, r] ⊆ r, [s, s] ⊆ s, where the set r = {x ∈ g |
θ(x) = −x} is the −1 eigenspace of the Cartan involution θ, whereas the set s = {x ∈ g | θ(x) = x} is the
+1 eigenspace of the Cartan involution θ. Additionally, the Killing form is proven to be positive definite
on r and negative definite on s (see, e.g., [15]). Thus, suitable candidates that satisfy the assumption
of Proposition 4.2 are connected semisimple Lie groups. On the other hand, a Cartan decomposition
determines a Cartan involution θ (see, e.g., [37]). In particular, the proposed decomposition for the Lie
algebra is not restrictive in the sense that the usual manifolds/work-spaces used in applications as S O(n)
and S E(n) allow such a decomposition. �

Proof. Given g = r ⊕ s we get g∗ = r∗ ⊕ s∗, where r∗ = span{e1, . . . , em} and s∗ = span{em+1, . . . , es}.
Thus, from (4.6) we have that ad∗ss

∗ ⊆ s∗, ad∗sr
∗ ⊆ r∗, ad∗rs

∗ ⊆ r∗, ad∗r r
∗ ⊆ s∗ and given that ui ∈ r,

∂Ci
∂ui
∈ r∗ and λi ∈ s

∗ by definition we conclude that ad∗ui

∂Ci
∂ui
∈ s∗ and ad∗ui

λi ∈ r
∗. Also, JW

(∂Vext
i,0

∂αi
, αi

)
∈ g∗

and
∑s

k=1 T ∗ei
Lgi

(
∂Vk
∂gi

)
∈ g∗ hence, they have a decomposition into r∗ and s∗. Thus, the equations (4.2)

split into the following equations

d
dt
∂Ci

∂ui
=ad∗ui

λi + JW

(∂Vext
i,0

∂αi
, αi

)∣∣∣∣∣
r

+ Θi
1

s∑
k=1

T ∗e Lgi

(
∂Vk

∂gi

)∣∣∣∣∣
r

,

λ̇i =ad∗ui

∂Ci

∂ui
+ JW

(∂Vext
i,0

∂αi
, αi

)∣∣∣∣∣
s

+ Θi
1

s∑
k=1

T ∗e Lgi

(
∂Vk

∂gi

)∣∣∣∣∣
s

,

(4.8)
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Remark 5. For the initial value problem guaranteeing a solution for the previous system of equations, we
look for a solution to the equations with the initial condition ui(0) = Tg(0)Lg−1(0)(ġi(0)) and the kinematic
equation ġi(t) = TeLgi(t)(ui(t)) with g(0) = (g1(0), . . . , gs(0)). �

Remark 6. Assuming the reduced Lagrangian is hyperregular, we use the Legendre transformation and
we can define the reduced Hamiltonian h : Gs−1 × (g∗)s × (g∗)s ×W∗ → R given by

h(g, µ, λ, α) = 〈µ, u〉 − `(g, u, λ, α),

where µ = ∂`
∂u =

(
∂C
∂u + λ

)
∈ (g∗)s. Under this assumption, the Euler-Poincare equations (4.2), (4.3) can

be written as the Lie-Poisson equations (see, e.g., [22])

µ̇i = ad∗ui
µi + JW

(∂Vext
i,0

∂αi
, αi

)
+ Θi

1

s∑
k=1

T ∗e Lgi

(∂Uk

∂gi

)
, (4.9)

α̇i = ρ′∗ui
(αi), αi(0) = ρ∗g0

i
(α0). (4.10)

5. Discrete-time reduced necessary conditions

In this section, we study the discrete-time reduction by symmetries for necessary conditions in
the collision and obstacle avoidance optimal control problem. The goal is to construct a variational
integrator based on the discretization of the augmented cost functional. Such integrator inherits discrete-
time symmetries from its continuous counterpart and generates a well-defined (local) flow for reduced
necessary conditions characterizing (local) extremal in the optimal control problem.

5.1. Trajectory discretization

Given the set T = {tk ∈ R
+, tk = kh | k = 0, . . . ,N}, Nh = T , with T fixed (recall that T ∈ R+ is the

end point of the cost functional - see for instance equation (3.4)), a discrete trajectory for the agent i is
determined by a set of N + 1 points equally spaced in time, g0:N

i = {g0
i , . . . , g

N
i }, where gk

i ' gi(kh) ∈ G,
and h = T/N is the time step. The path between two adjacent points gk

i and gk+1
i must be given by a

curve lying on the Lie group G. To construct such a curve we make use of a retraction map R : g→ G.

Definition 5.1. A retraction map R : g→ G is an analytic local diffeomorphism assigning a neighbor-
hood O ⊂ g of 0 ∈ g to a neighborhood of the identity e ∈ G.

0
huk

O

g

e
ξk,k+1R (O)

G

R−1

R

Figure 1. Retraction map.

The retraction map (see Figure 1) is used to express small discrete changes in the group configuration
through unique Lie algebra elements given by uk = R−1((gk)−1gk+1)/h, where uk ∈ g (see [38, 39] for
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further details). That is, if uk were regarded as an average velocity between gk and gk+1, then R is an
approximation to the integral flow of the dynamics. The difference ξk,k+1 := (gk)−1 gk+1 ∈ G, which is an
element of a nonlinear space, can now be represented by a vector space element uk. For the derivation
of the discrete equations of motion, the right trivialized tangent retraction map will be used. It is the
function dR : g × g→ g given by

TR(ξ) · η = TRR(ξ)dRξ(η), (5.1)

where η ∈ g and R : G → G the right translation on G and TR(ξ) · η is the directional derivative of R at
ξ in the direction of η (see [38,39] for the derivation of such a map). Here we use the following notation,
dRξ := dR(ξ) : g→ g. The function dR is linear, but only on one argument.

Remark 7. The natural choice of a retraction map is the exponential map at the identity e of the
group G, expe : g → G. Bear in mind that, for a finite-dimensional Lie group, expe is locally a
diffeomorphism and gives rise to a natural chart [40]. Then, there exists a neighborhood U of e ∈ G
such that exp−1

e : U → exp−1
e (U) is a local C∞−diffeomorphism. For an element g ∈ G a chart is given

by Ψg = exp−1
e ◦ Lg−1 .

Generally, it is not an easy task to work with the exponential map since the differential of the
exponential map involves power series expansions with iterated Lie-brackets. Consequently, it will be
more convenient to use a different retraction map. More concretely, the Cayley map, which is usually
used in numerical integration with matrix Lie-groups configurations (see [38, 39] for further details),
will provide to us a proper framework in the application shown in the next Section.

5.2. Discretization of the Lagrangian function

Next, we consider a discrete cost function to construct variational integrators in the same way as in
discrete mechanics [41]. In other words, consider the continuous-time Lagrangian L : Gs × gs → R

defined by the cost functional (3.4), that is,

L(g, u) =

s∑
i=1

(
Ci(gi(t), ui(t)) + V0

i (gi) +
1
2

∑
j∈Ni

Vi j(gi(t), g j(t))
)
,

and for a given h > 0, we define the discrete Lagrangian Ld : Gs × gs → R as an approximation of the
cost functional (3.4) along each discrete segment between gk and gk+1 = gkR(huk), that is,

Ld(gk, uk) = hL
(
κ(gk, uk), ζ(gk, uk)

)
'

∫ (k+1)h

kh
L(g, u) dt,

where κ and ζ are functions of (gk, uk) ∈ Gs × gs which approximate the configuration g(t) and the
control input u(t), respectively, in that interval. In the following, for simplicity, κ will be the projection
onto Gs and ζ will be the projection onto gs. Thus, we consider

Ld(gk, uk) = h
s∑

i=1

(
Ci(gk

i , u
k
i ) + V0

i (gk
i ) + Vi(gk)

)
. (5.2)

We remark that different choices of κ and ζ could result in higher-order numerical methods, such as,
using the middle point rule with κ(gk, uk) = gkR( h

2uk).
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5.3. Discrete-time optimal control problem and reduction of discrete-time necessary conditions for
optimality

Next, we are going to define the optimal control problem for discrete-time systems and derive a
variational integrator for Ld : Gs × gs → R, in a similar fashion as the variational equation presented in
Theorem 4.1.

Problem: Consider the discrete-time optimal control problem for collision and obstacle avoidance
of left-invariant multi agent control systems, which is given by finding the discrete configurations
{gk}Nk=0 = {(gk

1, . . . , g
k
s)}

N
k=0 and discrete control inputs {uk}Nk=0 = {(uk

1, . . . , u
k
s)}

N
k=0 minimizing the discrete

cost functional

min
(gk ,uk)

s∑
i=1

N−1∑
k=0

h
(
Ci(gk

i , u
k
i ) + V0

i (gk
i ) + Vi(gk)

)
(5.3)

subject to gk+1
i = gk

iR(huk
i ) (i.e., a first order approximation of equation (3.1)) with given boundary

conditions g0 and gN , where h > 0 denotes the time step, R : g→ G is a retraction map, ui(0) and ui(T )
are given, and each cost function Ci : G × g→ R, potential functions V0

i and Vi satisfy properties (i) -
(vii).

The discrete-time optimal control problem (5.3) can be considered as a discrete constrained varia-
tional problem by introducing the Lagrange multipliers µk

i ∈ g into the cost functional. Consider the
augmented discrete Lagrangian Ld : Gs ×Gs × gs × (g∗)s → R given by

Ld(gk, gk+1, uk,µk) = h
s∑

i=1

(
Ci(gk

i , u
k
i ) + V0

i (gk
i )

+ Vi(gk) +
〈
µk

i ,
1
h
R−1(ξk,k+1

i ) − uk
i

〉) (5.4)

where ξk,k+1
i = (gk

i )
−1gk+1

i ∈ G, for each i ∈ N . Note that the last term in the augmented Lagrangian
represents a first-order discretization of the kinematic constraint paired with a Lagrange multiplier in
analogy with the variational equation presented in Section 4.

Now, extending the potential V0
i , we obtain an extended Lagrangian Lext,d : Gs ×Gs × gs × (g∗)s ×

(W∗)s → R given by

Lext,d(gk, gk+1, uk, µk, α) = h
s∑

i=1

(
Ci(gk

i , u
k
i )

+V0,ext
i (gk

i , αi) + Vi(gk) +
〈
µk

i ,
1
h
R−1(ξk,k+1

i ) − uk
i

〉)
,

(5.5)

which is invariant under the left action of G on Gs ×Gs × gs × (g∗)s × (W∗)s given by Φ̃g(h1, h2, u, µ, α) =

(gh1, gh2, u, µ, ρ∗g−1(α)) by assumption (vi). In particular, under assumptions (iv)-(vi), the extended
discrete Lagrangian Lext,d(·, ·, ·, ·, α0) =: Lext,d,α0 is Gα0-invariant under Φ̃g.

The following result (Theorem 5.2) derives a variational integration for reduced optimality conditions
for the discrete-time optimal control (5.3) in analogy with the results presented in Section 4. To derive
the numerical algorithm, first we need the following result describing variations for elements on the Lie
algebra and its relation with variations on the Lie group by using the retraction map, in addition to a
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property used in the proof of Theorem 5.2. Though it is a well-known result in the literature, we include
it here to make the paper self-contained.

Lemma 5.1 (adapted from [38, 39]). The following properties hold

(i)
1
h
δ
(
R−1(ξk,k+1)

)
=

1
h

dR−1
(huk)(−η

k + AdR(huk)η
k+1),

where ηk = Tgk L(gk)−1(δgk) ∈ g and ξk,k+1 = (gk)−1gk+1.
(ii)

(dR−1
(−huk))

∗µk = Ad∗
R(huk)(dR

−1
(huk))

∗µk,

where µk ∈ (g∗) and dR−1 is the inverse right trivialized tangent of the retraction map R defined in
(5.1).

Theorem 5.2. Under assumptions (i)-(vii), an extremal for the discrete-time optimal control problem
(5.3) satisfies the following equations

gk+1
i =gk

iR(huk
i ), (5.6)(

dR−1
(huk

i )

)∗
µk

i =

(
dR−1

(−huk−1
i )

)∗
µk−1

i + JW

h∂V0,ext
i

∂ᾱk
i

, ᾱk
i


+ hΘi

1

s∑
l=1

T ∗e Lgk
i

(
∂Vl

∂gk
i

)
, (5.7)

µk
i =

(
∂Ci

∂uk
i

)
, (5.8)

ᾱk+1
i =ρ∗

R(huk
i )(ᾱ

k
i ), ᾱ0

i = ρ∗g0
i
(α0

i ), (5.9)

for k = 1, . . . ,N − 1; where Θi
1 = 0 if i = 1, otherwise Θi

1 = 1.

Proof. Since the cost functions and the potential functions satisfy assumptions (i) - (vii), as in the
continuous-time case, it is possible to induce the reduced augmented discrete Lagrangian `ext,d :
Gs−1 ×Gs × gs × (g∗)s × (W∗)s → R as

`ext,d(gk, ξk,k+1, uk, µk, ᾱk) =h
s∑

i=1

(Ci(uk
i ) + V0,ext

i (ᾱk
i )

+
〈
µk

i ,
1
h
R−1(ξk,k+1

i ) − uk
i

〉
+ Vi(gk),

where ᾱk
i = ρ∗

gk
i
(α0

i ) for a fixed α0
i ∈ W∗ satisfying α0

i = ρ∗
g0

i
(α0

i ) and, with a slight abuse of notation,

Ci(uk
i ) = Ci(e, uk

i ) and V0,ext
i (αk

i ) = V0,ext
i (e, αk

i ). Notice that, also here, gk
1 is set to be the identity element,

so that we have gk ∈ Gs−1.
As in the proof for Theorem 4.1, the technical part is to show that an extremal of the reduced

variational equation

δ

N−1∑
k=0

`ext,d(gk, ξk,k+1, uk, µk, ᾱk) = 0 (5.10)
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satisfies equations (5.6)-(5.8) for all variations of R−1(ξk,k+1) (induced by variations of gk vanishing at
the endpoints), uk and ᾱk of the form ρ

′∗

ηk(ᾱk), where ηk ∈ gs vanishes at the endpoints. Then, similarly as
in the proof for Theorem 4.1, it follows that an extremal for the optimal control problem (5.3) satisfies
the variational equation

δ

N−1∑
k=0

Ld(gk, gk+1, uk, µk) = 0,

for all variations of gk (vanishing at the endpoints), R−1(ξk,k+1) (induced by variations of gk) and uk.
Note that

0 = δ

N−1∑
k=0

`ext,d(gk, ξk,k+1, uk, µk, ᾱk)

=

N−1∑
k=0

s∑
i=1

h

〈∂Ci

∂uk
i

− µk
i , δu

k
i

〉
+

〈∂V0,ext
i

∂ᾱk , δᾱk
〉

+

s∑
l=2

〈∂Vi

∂gk
l

, δgk
l

〉
+

〈
µk

i ,
1
h

dR−1
huk

i
(−ηk

i + AdR(huk
i )η

k+1
i )

〉]
where we used Lemma 5.1 to obtain the last term. Since variations δuk

i are arbitrary, we obtain µk
i = ∂Ci

∂uk
i
.

As for the second term, we have that〈∂V0,ext
i

∂ᾱk , δᾱk
〉

=
〈∂V0,ext

i

∂ᾱk , ρ
′∗

ηk
i
(ᾱk)

〉
=

〈
JW

∂V0,ext
i

∂ᾱk , ᾱk

 , ηk
i

〉
.

As we have show along the proof for Theorem 4.1, we have that
s∑

l=2

〈∂Vi

∂gk
l

, δgk
l

〉
=

s∑
l=2

〈
T ∗e Lgk

l

(
∂Vi

∂gk
l

)
, ηk

l

〉
.

and the indexes might be interchanged. The last term to obtain equation (5.7) may be dealt with, using
integration by parts in discrete-time, which is just rearranging the indexes, together with the second
statement in Lemma 5.1 and the fact that η0

i = ηN
i = 0. Therefore,

N−1∑
k=0

s∑
i=1

〈
µk

i , dR
−1
huk

i
(−ηk

i + AdR(huk
i )η

k+1
i )

〉
=

N−1∑
k=1

s∑
i=1

〈 (
dR−1

(−huk−1
i )

)∗
µk−1

i −

(
dR−1

(huk
i )

)∗
µk

i , η
k
i

〉
and the equations (5.6)-(5.8) follow.

Remark 8. Equations (5.6)-(5.8) are as a discrete approximation of the Lie-Poisson equations for the

Hamiltonian version of the optimal control problem considered in [22]. The equation µk
i =

(
∂Ci

∂uk
i

)
represents the discrete time version of the reduced Legendre transformation and the equation gk+1

i =

gk
iR(huk

i ) is the analogous of the reconstruction equation in the discrete time counterpart. These three
equations are used to compute uk

i , µ
k
i and gk+1

i given uk−1
i , µk−1

i , gk−1
i and gk

i from k = 1 to k = N − 1. �
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To compute the discrete-time reduced necessary condition for the optimal control problem (5.3) we
must enforce boundary conditions given by the continuous-time quantities. More precisely, we must set

(
dR−1

(hu0
i )

)∗
µ0

i =
∂Ci

∂ui
(ui(0)) + hΘi

1

s∑
l=2

T ∗e Lg0
i

(
∂Vl

∂g0
i

)
+ hJW

∂V0,ext
i

∂ᾱ0 , ᾱ0

 ,
∂Ci

∂ui
(ui(T )) =

(
dR−1

(−huN−1
i )

)∗
µN−1

i ,

(5.11)

relating the momenta at the initial and final times, and use to transform boundary values between the
continuous and discrete representation. They follow from the principle that any variation with free
boundary points of the action (5.10) along a solution of equations (5.6)-(5.9) equals the change in
momentum 〈∂Ci

∂ui
(ui(T )), gN

i δg
N
i 〉 − 〈

∂Ci
∂ui

(ui(0)), g0
i δg

0
i 〉 (see [39] for a discussion in the single agent case).

Therefore, we must enforce

δ

N−1∑
k=0

`ext,d(gk, ξk,k+1, uk, µk, ᾱk) = 〈
∂Ci

∂ui
(ui(T )), gN

i δg
N
i 〉 − 〈

∂Ci

∂ui
(ui(0)), g0

i δg
0
i 〉

where the variation is taken along a family of solutions of the discrete equations (5.6)-(5.9) whose
boundary values are not fixed. By taking the variations of the discrete action, we eventually get a
vanishing term corresponding to the fact that this family of sequences satisfies the discrete equations
together with boundary terms multiplying η0

i and ηN
i , and simplifying, to the above equations.

Remark 9. If we choose the midpoint rule to discretize the potential Vi, then we would obtain the
following boundary conditions(

dR−1
(hu0

i )

)∗
µ0

i =
∂Ci

∂ui
(ui(0)) +

h
2

Θi
1

s∑
l=1

T ∗e Lg0
i

(
∂Vl

∂g0
i

)
+ hJW

∂V0,ext
i

∂ᾱ0 , ᾱ0

 ,
∂Ci

∂ui
(ui(T )) =

(
dR−1

(−huN−1
i )

)∗
µN−1

i +
h
2

Θi
1

s∑
l=1

T ∗e LgN
i

(
∂Vl

∂gN
i

)
.�

The boundary condition gs(T ) for agent s is enforced by the relation

R−1((gN
s )−1gs(T )) = 0. (5.12)

Recalling that R(0) = e, this last expression just means that gN
s = gs(T ). Moreover, by computing

recursively the equation gk+1
s = gk

sR(huk
s) for k = 1, . . . ,N − 1, using that g0

s = gs(0) and R(0) = e, it is
possible to translate the final configuration gN

s in terms of uk
s, such that there is no need to optimize over

any of the configurations gk
s. In that sense, (5.7) for i = s, l = 0 together with

R−1
[(
R(huN−1

s )
)−1

. . .
(
R(hu0

s)
)−1

(gs(0))−1gs(T )
]

= 0, (5.13)

form a set of (nN)-equations (since dim g = n) where nN unknowns are for u0:N−1
s , denoting the entire

sequence of controls {u0
s , . . . , u

N−1
s } for each agent s.

The numerical algorithm to compute the reduced optimality conditions is summarized in Algorithm 1.
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Algorithm 1 Reduced conditions for optimality
1: Data: Lie group G, its Lie algebra g, cost functions Ci, artificial potential functions Vi j, V0

i,ext, final time T , # of steps N.
2: inputs: gi(0), gi(T ), ui(0), ui(T ), α0

i , u0
i for all i = 1, . . . , s and h = T/N.

3: for i = 1→ s do
4: Fix g0

i = gi(0) and α0
i

5: solve (5.6) and (5.9) for k = 0.

6: outputs: g1
s , α1

s

7: for k = 1→ N − 1 do
8: for i = 1→ s do
9: solve (5.6)-(5.9) subject to (5.11).

10: outputs: g0:N−1
s , u0:N−1

s , µ0:N−1
s , α0:N−1

s .
11: Compute g0:N−1

s , u0:N−1
s , µ0:N−1

s , α0:N−1
s subjected to (5.13).

Note also that the exact form of equations (5.6)-(5.8) depends on the choice of R. This choice will
also effect the computational efficiency of the optimization framework in the case, the above equalities
are imposed as constraints. For instance, in Section 6, we will employ the Cayley transform on the Lie
group S E(2) as a choice of R to write in a compact form the numerical integrator [38], [17], but another
natural choice would be to employ the exponential map, as we explained in Section 5.1.

6. Case study

In this case study, we apply the proposed reduction by symmetry strategy to an optimal control for
autonomous surface vehicles (ASVs). The configuration space whose elements determine the motion of

each ASV is S E(2) � S O(2) × R2. An element gi ∈ S E(2) is given by gi =


cos θi − sin θi xi

sin θi cos θi yi

0 0 1

, where

(xi, yi) ∈ R2 represents the center of mass of a planar rigid body describing the ASV and θi represents
the angular orientation of the ASV. The control inputs, for each ASV, are given by ui = (u1

i , u
2
i ), where

u1
i denotes the speed of the center of mass for the ASV and u2

i denotes the angular velocity of the ASV.
The kinematic equations for the multi-agent system are:

ẋi = u2
i cos θi, ẏi = u2

i sin θi, θ̇i = u1
i , i = 1, . . . , s. (6.1)

Using the notation of Example 1, the Lie algebra se(2) is identified with R2 through the

isomorphism
(
−aJ b

0 0

)
7→ (a, b). The elements of the basis of the Lie algebra se(2) are

e1 =


0 −1 0
1 0 0
0 0 0

 , e2 =


0 0 1
0 0 0
0 0 0

 , e3 =


0 0 0
0 0 1
0 0 0

,
which satisfy [e1, e2] = e3, [e2, e3] = 0, [e3, e1] = e2. Thus, the kinematic equations (6.1) take the form
ġi = giui = gi(u1

i e1 + u2
i e2) and give rise to a left-invariant control system on S E(2)s × se(2)s. The inner

product on se(2) is given by 〈〈ξ1, ξ2〉〉 := tr(ξT
1 ξ2) for ξ1, ξ2 ∈ se(2) and hence, the norm is given by

Communications in Analysis and Mechanics Volume 15, Issue 2, 1–23.



18

||ξ|| =
√

tr(ξTξ), for any ξ ∈ se(2). The dual Lie algebra se(2)∗ of S E(2) is defined through the dual
pairing, 〈α, ξ〉 = tr(αξ), where α ∈ se(2)∗ and ξ ∈ se(2), hence, the elements of the basis of se(2)∗ are

e1 =


0 1

2 0
−1

2 0 0
0 0 0

 , e2 =


0 0 0
0 0 0
1 0 0

 , e3 =


0 0 0
0 0 0
0 1 0

.
Consider the cost function Ci(gi, ui) = 1

2〈ui, ui〉 and the artificial potential function Vi j : S E(2) ×

S E(2)→ R given by Vi j(gi, g j) =
σi j

2((xi − x j)2 + (yi − y j)2 − 4r2)
, where σi j ∈ R≥0 and r is the radius of

the disk each agent occupies as defined at the end of Section III. Consider a spherical obstacle with
unit radius and without loss of generality let it be centered at the origin. Hence, consider the obstacle
avoidance potential function V0

i : S E(2)→ R, V0
i (gi) =

σi0

2(x2 + y2 − (r + 1)2)
, where σi0 ∈ R>0.

Note that the obstacle avoidance potential functions are not S E(2)-invariant but S O(2)-invariant, so
they break the symmetry. Using the norm of se(2) and for r = 1, Vi j and V0

i are equivalently given by

Vi j(gi, g j) =
σi j

2(||Adg−1
i g j

e1||
2 − 6)

and V0
i (gi) =

σi0

2(||Adg−1
i

e1||
2 − 6)

.

Let W = se(2)∗, so we define the extended potential functions Vext
i,0 : S E(2) × se(2) → R by

Vext
i,0 (gi, α) = σi0

2(||Adg−1
i
α||2−6) , which are S E(2)-invariant under the action of Φ̃ given by (3.6), i.e. Vext

i,0 ◦ Φ̃ =

Vext
i,0 , for any g ∈ S E(2). Since, W = se(2)∗ we have JW

(∂Vext
i,0

∂αi
, αi

)
= ad∗αi

(∂Vext
i,0

∂αi

)
, and equations (4.2)

and (4.3) yield

d
dt

(
ui + λi

)
=ad∗ui

(
ui + λi

)
+ ad∗αi

(∂Vext
i,0

∂αi

)
+ Θi

1

∑
j∈Ni

T ∗e Lgi

(∂Vi j

∂θi
e1 +

∂Vi j

∂xi
e2 +

∂Vi j

∂yi
e3

)
,

together with α̇i = −aduiαi and αi = Adg−1
i
α0.

Note also that ui = u1
i e1 + u2

i e2, αi = α1
i e1 + α2

i e2 + α3
i e3 and λi = λi

3e3 thus,

ad∗ui
(ui + λi) =


0 −

u2
i λ

i
3

2 0
u2

i λ
i
3

2 0 0
u1

i λ
i
3 −u1

i u2
i 0

 , aduiαi =


0 0 −u1

i α
3
i

0 0 u1
i α

2
i − u2

i α
1
i

0 0 0

 ,

ad∗αi

(∂Vext
i,0

∂αi

)
=


0 0 0
0 0 0

Γ31
i,0 Γ32

i,0 0

 =
σi0α

1
i

(||αi||
2 − 6)2


0 0 0
0 0 0
−α3

i α2
i 0

 ,

T ∗e Lgi

(∂Vi j

∂gi

)
=


0 0 0
0 0 0

Γ31
i j Γ32

i j 0

 =
−σi j

((xi j)2 + (yi j)2 − 4)2


0 0 0
0 0 0
xi j yi j 0

 ,
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where xi j = xi − x j, yi j = yi − y j and Adg−1
i
α0 =


0 −1 xi sin θi − yi cos θi

1 0 xi cos θi + yi sin θi

0 0 0

.
Therefore, by applying Proposition 4.2 for r = span{e1, e2} and s = span{e3}, Euler-Lagrange

equations for the OCP (3.4) are

u̇1
i = −

u2
i λ

i
3

2
, u̇2

i = u1
i λ

i
3 + Γ31

i,0 + Θi
1

∑
j∈Ni

Γ31
i j , λ̇

i
3 = −u1

i u2
i + Γ32

i,0 + Θi
1

∑
j∈Ni

Γ32
i j ,

with

α̇1
i = 0, α1

i (0) = 1,
α̇2

i = u1
i α

3
i , α2

i (0) = x0
i sin θ0

i − y0
i cos θ0

i ,

α̇3
i = −u1

i α
2
i + u2

i α
1
i , α3

i (0) = x0
i cos θ0

i + y0
i sin θ0

i .

For the discrete-time setting, one would choose

Ci(gk
i , u

k
i ) =

h
2
〈uk

i j, u
k
i j〉, Vi(gk

i ) =
hσi

2(‖Ad(gk
i )−1e1‖

2 − 6)
,

where gk
i =


cos θk

i − sin θk
i xk

i
sin θk

i cos θk
i yk

i
0 0 1

 ∈ S E(2) and uk
i =

3∑
j=1

uk
i je j ∈ se(2). Also, in the discrete-time set-

ting, the extended potential function Vd,ext : S E(2) × se(2)→ R can be constructed in exactly the same
way as in the above example, and is given by

V0,ext
i (gk

i , αi) =
hσi

2(‖Ad(gk
i )−1αi‖

2 − 6)
,

where αk
i =

3∑
j=1

αk
i je

j. We do not give all the details again and leave it up to reader to verify that the

assumptions (i) - (vii) from (3.3) are satisfied. The discrete-time equations are

(dR−1
huk

i
)∗µk

i = (dR−1
−huk−1

i
)∗µk−1

i + ad∗
ᾱk

i

∂V0,ext
i

∂ᾱk
i

= Θi
1

∑
j∈Ni

T ∗e Lgi

(∂Vi j

∂θi
e1 +

∂Vi j

∂xi
e2 +

∂Vi j

∂yi
e3

)
,

ᾱk+1
i = AdR(huk

i )−1ᾱk
i , ᾱ

0
i = Ad(g0

i )−1α0
i ,

where

ad∗
ᾱk

i

∂V0,ext
i

∂ᾱk
i

=
hσiᾱ

k
i1

(‖ᾱk
i ‖

2 − 6)2


0 0 0
0 0 0
−ᾱk

i3 ᾱk
i2 0

 .
For numerical purposes, we first choose a suitable retraction map, like the Cayley map or the

exponential map, and then compute the quantities (dR−1
huk

i
)∗µk

i and (dR−1
−huk−1

i
)∗µk−1

i . As an example, if we

Communications in Analysis and Mechanics Volume 15, Issue 2, 1–23.



20

choose the Cayley map cay : se(2)→ SE(2) as the retraction map, (see [38] and [17] for instance) then
we have

[dcay−1
huk

i
]∗µk

i =


0 1

2γi 0
−1

2γi 0 0

µk
i2 −

huk
i1µ

k
i3

2
huk

i1µ
k
i2

2 + µk
i3 0


where

γi =

(
h2(uk

i1)2

4
+ 1

)
µk

i1 +

(
h2uk

i1uk
i2

4
−

huk
i3

2

)
µk

i2 +

(
h2uk

i1uk
i3

4
+

huk
i2

2

)
µk

i3

and µk
i =

3∑
j=1

µk
i je

j. Note that for v =

3∑
i=1

viei ∈ g, the matrix representation for dcay−1
v is given by

[dcay−1
v ] =


1 +

(v1)2

4
0 0

v1v2

4
−

v3

2
1

v1

2
v1v3

4
+

v2

2
−

v1

2
1


.

7. Conclusions

We studied the reduction by symmetry for optimality conditions of extremal in an OCP for collision
and obstacle avoidance of left-invariant multi-agent control system on Lie groups, by exploiting the
physical symmetries of the agents and obstacles. Reduced optimality conditions are obtained using
techniques from variational calculus and Lagrangian mechanics on Lie groups, in the continuous-time
and discrete-time settings. We applied the results to an OCP for multiple unmanned surface vehicles.
The method proposed in this work allows the construction of position and velocity estimators, by
discretizing the variational equation given in Theorem 4.1 - instead of discretizing the equations of
motion - and by deriving variational integrators - see Theorem 5.2. The reduction of sufficient conditions
for optimality will be also studied by using the notion of conjugate points, as in [42], in future work, as
well as the reduction by symmetry of the variational obstacle avoidance problems [43] on semidirect
products of Lie groups endowed with a bi-invariant metric on a Riemannian manifold.
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