[1]
|
Da CL, Chen FK, Ahmado A, et al. (2007) RPE transplantation and its role in retinal disease. Prog Retin Eye Res 26: 598–635. doi: 10.1016/j.preteyeres.2007.07.001
|
[2]
|
Tezel TH, Priore LVD, Berger AS, et al. (2007) Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol 143: 584–395. doi: 10.1016/j.ajo.2006.12.007
|
[3]
|
Uygun BE, Sharma N, Yarmush M (2009) Retinal pigment epithelium differentiation of stem cells: current status and challenges. Crit Rev Biomed Eng 37: 355–375. doi: 10.1615/CritRevBiomedEng.v37.i4-5.30
|
[4]
|
Dang Y, Zhang C, Zhu Y (2015) Stem cell therapies for age-related macular degeneration: the past, present, and future. Clin Interv Aging 10: 255–264.
|
[5]
|
Melville H, Carpiniello M, Hollis K, et al. (2013) Stem cells: a new paradigm for disease modeling and developing therapies for age-related macular degeneration. J Transl Med 11: 53. doi: 10.1186/1479-5876-11-53
|
[6]
|
Fields MA, Bowrey HE, Gong J, et al. (2015) Retinoid processing in induced pluripotent stem cell-derived retinal pigment epithelium cultures. Prog Mol Biol Transl Sci 134: 477–490. doi: 10.1016/bs.pmbts.2015.06.004
|
[7]
|
Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85: 845–881. doi: 10.1152/physrev.00021.2004
|
[8]
|
Fronk AH, Vargis E (2016) Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations. J Tissue Eng 7: 1–23.
|
[9]
|
Burke JM, Skumatz CM, Irving PE, et al. (1996) Phenotypic heterogeneity of retinal pigment epithelial cells in vitro and in situ. Exp Eye Res 62: 63–73. doi: 10.1006/exer.1996.0008
|
[10]
|
McKay BS, Irving PE, Skumatz CM, et al. (1997) Cell-cell adhesion molecules and the development of an epithelial phenotype in cultured human retinal pigment epithelial cells. Exp Eye Res 65: 661–671. doi: 10.1006/exer.1997.0374
|
[11]
|
Sonoi R, Kim MH, Kino-oka M (2016) Locational heterogeneity of maturation by changes in migratory behaviors of human retinal pigment epithelial cells in culture. J Biosci Bioeng 119: 107–112.
|
[12]
|
Sonoi R, Kim MH, Kino-oka M (2016) Facilitation of uniform maturation of human retinal pigment epithelial cells through collective movement in culture. J Biosci Bioeng 121: 220–226. doi: 10.1016/j.jbiosc.2015.05.019
|
[13]
|
Rothbauer M, Wartmann D, Charwat V, et al. (2015) Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol Adv 33: 948–961. doi: 10.1016/j.biotechadv.2015.06.006
|
[14]
|
Yi C, Li CW, Ji S, et al. (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560: 1–23. doi: 10.1016/j.aca.2005.12.037
|
[15]
|
Tam J, Cordier GA, Bálint Š, et al. (2014) A microfluidic platform for correlative live-cell and super-resolution microscopy. PLoS One 9: e115512. doi: 10.1371/journal.pone.0115512
|
[16]
|
Kartalov EP, Anderson WF, Scherer A (2006) The analytical approach to polydimethylsiloxane microfluidic technology and its biological applications. J Nanosci Nanotechno 6: 2265–2277. doi: 10.1166/jnn.2006.504
|
[17]
|
Sung JH, Shuler ML (2009) Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed Microdevices 11: 731–738. doi: 10.1007/s10544-009-9286-8
|
[18]
|
Zhang W, Lin S, Wang C, et al. (2009) PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip 9: 3088–3094. doi: 10.1039/b907254c
|
[19]
|
Leclerc E, Sakai Y, Fujii T (2004) Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Biotechnol Progr 20: 750–755. doi: 10.1021/bp0300568
|
[20]
|
Ren KN, Zhou JH, Wu HK (2013) Materials for microfluidic chip fabrication. Accounts Chem Res 46: 2396–2406. doi: 10.1021/ar300314s
|
[21]
|
Gómez-Sjöberg R, Leyrat AA, Pirone DM, et al. (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79: 8557–8563. doi: 10.1021/ac071311w
|
[22]
|
Wartmann D, Rothbauer M, Kuten O, et al. (2015) Automated, miniaturized and integrated quality control-on-chip (qc-on-a-chip) for advanced cell therapy applications. Front Mater 2: 60.
|
[23]
|
Jaccard N, Macown RJ, Super A, et al. (2014) Automated and online characterization of adherent cell culture growth in a microfabricated bioreactor. J Lab Autom 19: 437–443. doi: 10.1177/2211068214529288
|
[24]
|
Bahnemann J, Rajabi N, Fuge G, et al. (2013) A new integrated lab-on-a-chip system for fast dynamic study of mammalian cells under physiological conditions in bioreactor. Cells 2: 349–360. doi: 10.3390/cells2020349
|
[25]
|
Kawaguchi R, Yu J, Honda J, et al. (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315: 820–825. doi: 10.1126/science.1136244
|
[26]
|
Bok D (1990) Processing and transport of retinoids by the retinal pigment epithelium. Eye 4: 326–332. doi: 10.1038/eye.1990.44
|
[27]
|
Bise R, Kanade T, Yin Z, et al. (2011) Automatic cell tracking applied to analysis of cell migration in wound healing assay. International Conference of the IEEE Engineering in Medicine and Biology Society, 6174–6179.
|
[28]
|
Dorfer M, Kazmar T, Šmíd M, et al. (2016) Associating approximate paths and temporal sequences of noisy detections: application to the recovery of spatio-temporal cancer cell trajectories. Med Image Anal 27: 72–83. doi: 10.1016/j.media.2015.03.007
|
[29]
|
Ker DF, Weiss LE, Junkers SN, et al. (2011) An engineered approach to stem cell culture: automating the decision process for real-time adaptive subculture of stem cells. PLoS One 6: e27672. doi: 10.1371/journal.pone.0027672
|