Evolutionary algorithm is one of the optimization techniques. Cat swarm optimization (CSO)-based algorithm is frequently used in many applications for solving challenging optimization problems. In this paper, the tracing mode in CSO is modified to reduce the number of user-defined parameters and weaken the sensitivity to the parameter values. In addition, a mode ratio control scheme for switching individuals between different movement modes and a search boosting strategy are proposed. The obtained results from our method are compared with the modified CSO without the proposed strategy, the original CSO, the particle swarm optimization (PSO) and differential evolution (DE) with three commonly-used DE search schemes. Six test functions from IEEE congress on evolutionary competition (CEC) are used to evaluate the proposed methods. The overall performance is evaluated by the average ranking over all test results. The ranking result indicates that our proposed method outperforms the other methods compared.
Citation: Pei-Wei Tsai, Xingsi Xue, Jing Zhang, Vaci Istanda. Adjustable mode ratio and focus boost search strategy for cat swarm optimization[J]. Applied Computing and Intelligence, 2021, 1(1): 75-94. doi: 10.3934/aci.2021005
Evolutionary algorithm is one of the optimization techniques. Cat swarm optimization (CSO)-based algorithm is frequently used in many applications for solving challenging optimization problems. In this paper, the tracing mode in CSO is modified to reduce the number of user-defined parameters and weaken the sensitivity to the parameter values. In addition, a mode ratio control scheme for switching individuals between different movement modes and a search boosting strategy are proposed. The obtained results from our method are compared with the modified CSO without the proposed strategy, the original CSO, the particle swarm optimization (PSO) and differential evolution (DE) with three commonly-used DE search schemes. Six test functions from IEEE congress on evolutionary competition (CEC) are used to evaluate the proposed methods. The overall performance is evaluated by the average ranking over all test results. The ranking result indicates that our proposed method outperforms the other methods compared.
[1] | S. C. Chu, P. W. Tsai, J. S. Pan, Cat Swarm Optimization, PRICAI 2006: Trends in Artificial Intelligence, Pacific Rim International conference on Artificial Intelligence, Lect. Notes Comput. Sc., 4099 (2006), 854–858. doi: 10.1007/978-3-540-36668-3_94 |
[2] | D. Debnath, R. Das, P. Pakray, Extractive Single Document Summarization Using Multi-objective Modified Cat Swarm Optimization Approach: ESDS-MCSO, Neural Computing and Applications, 2021. online, doi: 10.1007/s00521-021-06337-4 |
[3] | J. Huang, P. G. Asteris, S. M. K. Pasha, A. S. Mohammed, M. Hasanipanah, A New Auto-tuning Model for Predicting the Rock Fragmentation: A Cat Swarm Optimization Algorithm, Engineering with Computers, 2020. online, doi: 10.1007/s00366-020-01207-4 |
[4] | A. M. Ahmed, T. A. Rashid, S. A. M. Saeed, Dynamic Cat Swarm Optimization algorithm for backboard wiring problem, Neural Comput. Appl., 33 (2021), 13981–13997. doi:10.1007/s00521-021-06041-3 doi: 10.1007/s00521-021-06041-3 |
[5] | P. W. Tsai, J. S. Pan, S. M. Chen, B. Y. Liao, Enhanced parallel Cat Swarm Optimization based on the Taguchi Method, Expert Syst. Appl., 39 (2012), 6309–6319. doi:10.1016/j.eswa.2011.11.117 doi: 10.1016/j.eswa.2011.11.117 |
[6] | V. I. Skoullis, I. X. Tassopoulos, G. N. Beligiannis, Solving the high school Timetabling Problem using a hybrid Cat Swarm Optimization based algorithm, Appl. Soft Comput., 52 (2017), 277–289. doi:10.1016/j.asoc.2016.10.038 doi: 10.1016/j.asoc.2016.10.038 |
[7] | K. Balaji, P. S. Kiran, M. S. Kumar, An energy efficient load balancing on cloud computing using adaptive Cat Swarm Optimization, Materialstoday: proceedings, In Press, 2020. doi: 10.1016/j.matpr.2020.11.106 |
[8] | A. Sarswat, V. Jami, R. M. R. Guddeti, A novel two-step approach for overlapping community detection in social networks, Soc. Netw. Anal. Min., 7 (2017), 1–11. doi:10.1007/s13278-017-0469-7 doi: 10.1007/s13278-017-0469-7 |
[9] | N. Kanwar, N. Gupta, K. R. Niazi, A. Swarnkar, Improved Cat Swarm Optimization for simultaneous allocation of DSTATCOM and DGs in distribution systems, J. Renew. Ener., 2015 (2015), 1–10. doi:10.1155/2015/189080 doi: 10.1155/2015/189080 |
[10] | J. Li, M. Gao, J. S. Pan, S. C. Chu, A parallel compact Cat Swarm Optimization and its application in DV-Hop node localization for wireless sensor network, Wirel. Netw., 27 (2021), 2081–2101. doi:10.1007/s11276-021-02563-9 doi: 10.1007/s11276-021-02563-9 |
[11] | X. Nie, W. Wang, H. Nie, Chaos Quantum-Behaved Cat Swarm Optimization algorithm and its application in the PV MPPT, Comput. Intel. Neurosc., 2017 (2017), 1–11. doi:10.1155/2017/1583847 doi: 10.1155/2017/1583847 |
[12] | P. Mohapatra, S. Chakravarty, P. K. Dash, Microarray medical data classification using kernel ridge regression and modified Cat Swarm Optimization based gene selection system, Swarm Evol. Comput., 28 (2016), 144–160. doi:10.1016/j.swevo.2016.02.002 doi: 10.1016/j.swevo.2016.02.002 |
[13] | H. Siqueira, C. Santana, M. Macedo, E. Figueiredo, A. Gokhale, C. Bastos-Filho, Simplified Binary Cat Swarm Optimization, Integr. Comput-Aid. E., 28 (2021), 35–50. doi:10.3233/ICA-200618 doi: 10.3233/ICA-200618 |
[14] | M. Gomathy, Optimal feature selection for speech emotion recognition using enhanced Cat Swarm Optimization algorithm, Int. J. Speech Technol., 24 (2021), 155–163. doi:10.1007/s10772-020-09776-x doi: 10.1007/s10772-020-09776-x |
[15] | H. Singh, Y. Kumar, A neighborhood search based Cat Swarm Optimization algorithm for clustering problems, Evol. Intell., 13 (2020), 593–609. doi:10.1007/s12065-020-00373-0 doi: 10.1007/s12065-020-00373-0 |
[16] | D. Yan, H. Cao, Y. Yu, Y. Wang, X. Yu, Single-Objective/Multiobjective Cat Swarm Optimization clustering analysis for data partition, IEEE T. Autom. Sci. Eng., 17 (2020), 1633–1646. doi:10.1109/TASE.2020.2969485 doi: 10.1109/TASE.2020.2969485 |
[17] | M. Rao, N. K. Kamila, Cat Swarm Optimization based autonomous recovery from network partitioning in heterogeneous underwater wireless sensor network, Int. J. Syst. Assur. Eng., 12 (2021), 480–494. doi:10.1007/s13198-021-01095-x doi: 10.1007/s13198-021-01095-x |
[18] | H. Sikkandar, R. Thiyagarajan, Deep learning based facial expression recognition using improved Cat Swarm Optimization, J. Amb. Intel. Hum. Comp., 12 (2021), 3037–3053. doi:10.1007/s12652-020-02463-4 doi: 10.1007/s12652-020-02463-4 |
[19] | T. V. Vivek, R. R. Guddeti, A hybrid bioinspired algorithm for facial emotion recognition using CSO-GA-PSO-SVM, The 2015 Fifth International Conference on Communication Systems and Network Technologies (CSNT), 472–477, 2015. |
[20] | M. Kumar, S. K. Mishra, S. K. Choubey, S. S. Tripathy, D. K. Choubey, D. Das, Cat Swarm Optimization based functional link multilayer preceptron for suppression of Gaussian and impulse noise from computed tomography images, Curr. Med. Imaging, 16 (2020), 329–339. doi:10.2174/1573405614666180903115336 doi: 10.2174/1573405614666180903115336 |
[21] | H. Israa, M. Sabah, Improvement Cat Swarm Optimization for efficient motion estimation, Int. J. Hybrid Inf. Technol., 8 (2015), 279–294. doi:10.14257/ijhit.2015.8.1.25 doi: 10.14257/ijhit.2015.8.1.25 |
[22] | M. Suresh, I. S. Sam, Exponential fractional Cat Swarm Optimization for video steganography, Multimed. Tools Appl., 80 (2021), 13253–13270. doi:10.1007/s11042-020-10395-6 doi: 10.1007/s11042-020-10395-6 |
[23] | X. F. Ji, J. S. Pan, S. C. Chu, P. Hu, Q. W. Chai, P. Zhang, Adaptive Cat Swarm Optimization algorithm and its applications in vehicle routing problems, Math. Probl. Eng., 2020 (2020), 1–14. doi:10.1155/2020/1291526 doi: 10.1155/2020/1291526 |
[24] | M. F. Sohail, C. Y. Leow, S. H. Won, A Cat Swarm Optimization based transmission power minimization for an aerial NOMA communication system, Veh. Commun., 2021. In Press, doi: 10.1016/j.vehcom.2021.100426 |
[25] | A. M. Ahmed, T. A. Rashid, S. A. M. Saeed, Cat Swarm Optimization algorithm: A survey and performance evaluation, Comput. Intel. Neurosc., 2020 (2020), 1–20. doi:10.1155/2020/4854895 doi: 10.1155/2020/4854895 |
[26] | R. R. Ihsan, S. M. Almufti, B. M. S. Ormani, R. R. Asaad, R. B. Marqas, A survey on Cat Swarm Optimization algorithm, Asian J. Res. Comput. Sci., 10 (2021), 22–32. doi:10.9734/AJRCOS/2021/v10i230237 doi: 10.9734/AJRCOS/2021/v10i230237 |
[27] | D. Li, W. Guo, A. Lerch, Y. Li, L. Wang, Q. Wu, An adaptive particle swarm optimizer with decoupled exploration and exploitation for large scale optimization, Swarm Evol. Comput., 60 (2021). doi: 10.1016/j.swevo.2020.100789 |
[28] | baeldung, P, NP, NP-Complete and NP-Hard Problems in Computer Science, Available from: https://www.baeldung.com/cs/p-np-np-complete-np-hard |
[29] | J. S. Pan, L. Kong, T. W. Sung, P. W. Tsai, S. Vaclav, A clustering scheme for wireless sensor networks based on genetic algorithm and dominating set, J. Internet Technol., 19 (2018), 1111–1118. |
[30] | X. Xue, C. Jiang, H. Wang, P. W. Tsai, G. Mao, H. Zhu, An improved multi-objective evolutionary optimization algorithm with inverse model for matching sensor ontologies, Soft Comput., 25 (2021), 12227–12240. doi: 10.1007/s00500-021-05895-y |
[31] | P. W. Tsai, J. S. Pan, S. M. Chen, B. Y. Liao, S. P. Hao, Parallel Cat Swarm Optimization, 2008 International Conference on Machine Learning and Cybernetics (ICMLC), 6 (2008), 3328–3333. doi:10.1109/ICMLC.2008.4620980 doi: 10.1109/ICMLC.2008.4620980 |
[32] | B. Santosa, M. K. Ningrum, Cat Swarm Optimization for clustering 2009 International Conference of Soft Computing and Pattern Recognition, 2009, 54–59. doi: 10.1109/SoCPaR.2009.23 |
[33] | Y. Sharafi, M. A. Khanesar, M. Teshnehlab, Discrete binary Cat Swarm Optimization algorithm 2013 3rd International Conference on Computer, Control & Communication (IC4), 2013, 1–6. doi: 10.1109/IC4.2013.6653754 |
[34] | M. Orouskhani, Y. Orouskhani, M. Mansouri, M. Teshnehlab, A novel Cat Swarm Optimization algorithm for unconstrained optimization problems, Int. J. Inf. Technol. Comput. Sci., 5 (2013), 32–41. |
[35] | P. M. Pradhan, G. Panda, Solving multiobjective problems using cat swarm optimization Expert Syst. Appl., 39 (2012), 2956–2964. doi: 10.1016/j.eswa.2011.08.157 |
[36] | M. Orouskhani, M. Mansouri, M. Teshnehlab, Average-inertia weighted Cat Swarm Optimization International Conference in Swarm Intelligence, 2011,321–328. |
[37] | D. Bingham, S. Surjanovic, Virtual Library of Simulation Experiments: Test Functions and Datasets, 2013. Available from: https://www.sfu.ca/ ssurjano/ackley.html |
[38] | X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, Benchmark Function for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization, 2013. Available from: https://titan.csit.rmit.edu.au/ e46507/cec13-lsgo/competition/cec2013-lsgo-benchmark-tech-report.pdf |
[39] | R. M. Storn, K. V. Price, Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces, J. Global Optim., 11 (1997), 314–359. doi:10.1023/A:1008202821328 doi: 10.1023/A:1008202821328 |
[40] | S. C. Chu, P. W. Tsai, Computational intelligence based on the behavior of Cats, Int. J. Innov. Comput. I., 3 (2007), 163–173. |
[41] | C. Jin, P. W. Tsai, A. K. Qin, A study on knowledge reuse strategies in multitasking differential evolution, 2019 IEEE Congress on Evolutionary Computation (CEC), 2019, doi: 10.1109/CEC.2019.8790102. |
[42] | J. Kennedy, R. Eberhart, Particle swarm optimization, ICNN'95-International Conference on Neural Networks, 1995, doi: 10.1109/ICNN.1995.488968 |
[43] | A. K. Qin, X. Li, Differential Evolution on the CEC-2013 Single-Objective Continuous Optimization Testbed, 2013 IEEE Congress on Evolutionary Computation (CEC'13), 2019, 1099–1106. doi: 10.1109/CEC.2013.6557689. |