Citation: Atanu Das. Performance evaluation of modified adaptive Kalman filters, least means square and recursive least square methods for market risk beta and VaR estimation[J]. Quantitative Finance and Economics, 2019, 3(1): 124-144. doi: 10.3934/QFE.2019.1.124
[1] | Almagbile A, Wang J, Ding W (2010) Evaluating the Performances of Adaptive Kalman Filter Methods in GPS/INS Integration. J Glob Position Syst 9: 33–40. doi: 10.5081/jgps.9.1.33 |
[2] | Berardi A, Corradin S, Sommacampagna C (2002) Estimating Value at Risk with the Kalman Filter. University of Trieste, Italy. |
[3] | Bel H, Ayed A, Loeper G, et al. (2017) Forecasting trends with asset prices. Quant Financ 17: 369–382. doi: 10.1080/14697688.2016.1206959 |
[4] | Barth JR, Han S, Joo S, et al. (2018) Forecasting net charge-off rates of banks: What model works best? Quant Financ Econ 2: 554–589. doi: 10.3934/QFE.2018.3.554 |
[5] | Das A (2014) Estimation and Prediction in Finance-A Review, In: N. Chaudhary, Dynamics of Commerce and Management in the New Millennium, Int. Research Pub. House, New Delhi, India: 267–306. |
[6] | Das A (2016) Higher Order Adaptive Kalman Filter for Time Varying Alpha and Cross Market Beta Estimation in Indian Market. Econ Comput Econ Cybern Stud 50: 211–228. |
[7] | Das A, Ghoshal TK (2010) Market Risk Beta Estimation using Adaptive Kalman Filter. Int J Eng Sci Technol 2: 1923–1934. |
[8] | Das A, Basu PN, Das SC (2008) A re-look at the VaR computation method recommended by National Stock Exchange of India. ICFAI J Appl Finance 14: 45–53. |
[9] | Ding W, Wang J, Rizos C (2007) Improving adaptive Kalman estimation in GPS/INS integration. J Navig 60: 517–529. doi: 10.1017/S0373463307004316 |
[10] | Gastaldi M, Nardecchia A (2003) The Kalman Filter Approach For Time-Varying β Estimation. Syst Anal Model Simul 43: 1033–1042. doi: 10.1080/0232929031000150373 |
[11] | Haykin S (2001) Adaptive Filter Theory, 4th ed., Prentice Hall. |
[12] | Kai RW, Leschinski CH, Sibbertsen P (2018) The memory of volatility. Quant Financ Econ 2: 137–159. doi: 10.3934/QFE.2018.1.137 |
[13] | Kownacki C (2015) Design of Adaptive Kalman Filter to Eliminate Measurement Faults of a Laser Rangefinder Used in the UAV System. Aerosp Sci Technol 41: 81–89. doi: 10.1016/j.ast.2014.12.008 |
[14] | Mehra RK (1972) Approaches to adaptive filtering. IEEE Trans Autom Control 17: 693–698. doi: 10.1109/TAC.1972.1100100 |
[15] | Mergner S (2008) Applications of Advanced Time Series Models to Analyze the Time-varying Relationship between Macroeconomics, Fundamentals and Pan-European Industry Portfolios. Georg-August-University at Gottingen, Germany. |
[16] | Mohamed AH, Schwar KP (1999) Adaptive Kalman Filtering for INS/GPS. J Geod 73: 193–203. doi: 10.1007/s001900050236 |
[17] | Nazin AV, Ljung L (2002) Asymptotically optimal smoothing of averaged LMS estimates for regression parameter tracking. Autom 38: 1287–1293. doi: 10.1016/S0005-1098(02)00028-6 |
[18] | Senyurek VY, Baspinar U, Varol HS (2014) A Modified Adaptive Kalman Filter For Fibre Optic Gyroscope. Rev Roum Sci Tech-Ser Electro 59: 153–162. |
[19] | Shah A, Moonis SA (2003) Testing for time variation in beta in India. J Emerg Mark Financ 2: 163–180. doi: 10.1177/097265270300200202 |
[20] | Simon D (2006) Optimal State Est.: Kalman, H-infinity, and Nonlinear Approaches, John Wiley & Sons. |
[21] | Snyder RD, Saligari GR (1996) Initialization of the Kalman filter with partially diffuse initial conditions. J Time Ser Anal 17: 409–424. doi: 10.1111/j.1467-9892.1996.tb00285.x |
[22] | Wang Z, Woodward WA, Gray HL (2009) The application of the Kalman filter to nonstationary time series through time deformation. J Time Ser Anal 30: 559–574. doi: 10.1111/j.1467-9892.2009.00628.x |
[23] | Yamai Y, Yoshiba T (2002) Comparative analyses of expected shortfall and VaR (2): expected utility maximization and tail risk. Monetary Econ Stud 20: 95–115. |