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1. Introduction  

A lot of variations of Adaptive Kalman Filters (AKFs) have been developed in the post Kalman 

Filter (KF) era where process and observation noise covariances are mostly assumed to be known a priori 

or calculated indirectly. Recently, some AKFs were evolved by Ding (2007), Almagbile et al. (2010), Das 

and Ghoshal (2010), Senyurek et al. (2014), Kownacki (2015), Das (2016) and Bel et al. (2017) where 

those noise covariances are assumed to be time varying and made known within the filter iterations. 

Process noise has been scaled during each filter iterations by available other parameters where as 
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observation noise covariance is revealed using innovations based noise covariance matching principle. 

These techniques have been applied specially for state and parameter estimations of control and 

navigational problems (Ding et al., 2007) where any one of these two covariances was assumed to be 

known and other covariance is calculated. These techniques are suffering from parameter inconsistency 

problem. To deal with this problem some suitable modifications is introduced in this work. The next 

target is to develop AKFs and its modifications (if any) where both these noise covariances are not 

known a priori and calculated during each filter iterations, may be simultaneously. The next target is to 

characterize these methods for market risk beta () estimation in a simple stochastic financial system 

modelled by Capital Asset Pricing Model (CAPM) (Shah and Moonis, 2003; Bel et al., 2017) and 

auto-regressive  movement with Gaussian noise components. 

CAPM changes the concept of risk identification by volatility (Kai et al., 2018) as only risk 

measure to that by another variable denoted by  known as systematic (or market) risk.  measures 

the asset sensibility to the variations on the market returns. Though  is assumed to be time invariant 

in the classical financial literature, the estimation problem becomes complicated when it is assumed 

to be time varying. There are substantial evidences that the stability assumption is invalid in several 

financial markets in US, Itali, Malaysia, Australia and even in India (Mohamed and Schwarz, 1999; 

Shah and Moonis, 2003). This study explores Indian financial market data describing the relation () 

between the assets return (identified by sectorial indices) and the market index return (identified by 

gross market index). 

One of the important uses of  is for VaR estimation usually estimated using volatility (Das et 

al., 2008; Das, 2014). The VaR calculation methods are thus named after the estimation techniques of 

the .  is estimated using OLS, KF and improved KF (Berardi, 2002; Shah and Moonis, 2003; 

Gastaldi and Nardecchia, 2003; Wang et al., 2009) in a linear framework and hence the names follow. 

After  estimation the VaR calculation formula of a portfolio is given by: 

2

P
 = w

' w
2

m , and VaR z p .           (1) 

where 
2

m  is the estimated variance of the market index return,  is the vector of s of individual 

assets in the portfolio with corresponding weight vector w of portfolio composition. 

Unfortunately VaR alone cannot answer the question of how large can the losses be when the 

VaR is exceeded. However, there is one measure which can complement VaR to make available the 

information that is missing on tail losses (i.e. losses in excess of VaR). This is the Expected Shortfall 

(ES) (Yamai and Yoshiba, 2002), which is the expected value (i.e. the average) of the suffered losses, 

L, if a loss is emerging in excess of VaR. In mathematical terms:  

ES = E [ L | L > VaR ]         (2) 

VaR enlightens us the most we can expect to lose if a bad (i.e. tail) event does not occur, and the 

ES tells us what we can expect to lose if a tail event does occur. In short, the ES has the same appeal 

as the VaR. ES presents a common consistent risk measure across different positions. It also has 

many of the same uses as VaR. 

The goodness of the models along with considered methods is evaluated by comparing the 

in-sample forecasting accuracy of the estimated returns through  estimates (Mergner, 2008). In-sample 

forecasting accuracy of returns is determined by two measures namely mean absolute error (MAE) and 
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the root mean squared error (RMSE). The focus of the present study is to conduct time evolving beta 

estimation (market risk) through different methods and comparing the performances thereof. The 

performance of the empirically estimated s are judged by (1) VaR estimation with the estimated 

empirical s, primarily as indirect method of performance evaluation, (2) In-sample return forecasting 

performance analysis with those estimated s, secondarily as direct method of performance evaluation as 

far as beta estimation forecasting is concern. VaR backtesting using traffic light approach and expected 

shortfall analysis are presented to justify how best that VaR estimates are. 

This paper is organised as follows. In section 2, related literature and background theory are 

reviewed. Section 3 demonstrates the techniques used in this work where as section 4 depicted the 

results of the explorations carried out with realizations. Section 5 presents some conclusions based 

on the evidence obtained in this study. 

2. Background theory 

According to CAPM if the market portfolio is efficient, then the i-th asset return is described by 

imiii
rr    where i

r  and m
r  is the returns of the i th asset and market index respectively, i

  

is the risk free rate of return (risk free interest), i
  is the random error term (with variance 2

t
 ), 

i
  is the relationship of the asset return with market index return, or in other words, it is the 

sensitivity of the i-th asset return with respect to the market. i
  can be expressed as a ratio of 

covariance ( im
 ) between specific asset returns and market index returns and variance ( 2

m
 ) of market 

index returns. i.e. 2/
mimi

  . If asset returns is completely uncorrelated to the market returns i.e. 

0
i

 , then according to CAPM asset return will be equal to the risk-free rate of return. The CAPM 

changes concept of the risk from the volatility to . 

In the simpler model, the sensitivity term  is a constant and the noise term is zero mean, 

Gaussian IID samples. As the describing equation imiii
rr    is linear, the constants i

  and 

i
  can be determined in the least square (Barth et al., 2018) sense from the time series data of i

r  

and m
r . Analysis of the time series of residuals i

 also reveals interesting aspects. For example, one 

can verify whether i
  is zero mean (a violation would indicate computational error), from the 

standard deviation of i
 , one can deduce the quality of fit by statistical techniques, whether i

  is a 

Gaussian sequence, whether the terms in i
  are really uncorrelated noise etc. The last criterion, 

namely, whether the terms in i
  are really uncorrelated noise would really put a question mark on 

the assumption that the sensitivity term  is a constant. 

Literature shows that there have been quite a number of techniques for  estimation among 

which Ordinary Least Square (OLS), KF (Berardi et al., 2002; Shah and Moonis, 2003) are used 

conventionally and AKF are used rarely. Shah and Moonis (2003) used modified KF for estimating 

daily s with high frequency Indian data exhibiting significant non-Gaussianity in the distribution of 

. Gastaldi and Nardecchia (2003) approached to estimate time varying  using KF. 

3. Methodology 

Application of OLS technique is common for estimation of static  of an industry sector. However 

the first focus here is towards the utilization of two adaptive estimation techniques namely, RLS (Simon, 

2006) and LMS (Haykin, 2001; Nazin and Ljung, 2002) for time varying  estimation. Though these 



127 

Quantitative Finance and Economics  Volume 3, Issue 1, 124–144. 

adaptive filters have huge applications in control and navigation literature, but these are rarely found in 

finance and econometric. The other focus is the applications of KF (Gastaldi and Nardecchia, 2003; 

Snyder et al., 1996) and newly proposed Modified Adaptive Kalman Filters (MAKF) using regression 

model of CAPM. Sectorial indices data from Indian market together with Nifty has been analysed in this 

section to get the time varying adaptive estimates of  parameter of the specific sectors. Those existing 

and newly proposed adaptive estimation techniques are presented below. 

3.1. RLS 

OLS gives a way to compute the optimal estimate of constant parameters of a linear regression 

equation. If we obtain measurements sequentially and want to update our estimate of state we need to 

augment the measurement transition coefficient and completely recomputed the state estimates. If 

number of outputs becomes large, then the computational effort could become excessive. A linear 

recursive estimator for  of regression model of CAPM given by tttmti
rr  

,,
 with 0 , can be 

written as )ˆ(ˆˆ
1,,1 


ttmtittt

rrK  , i.e. we compute t
̂  on the basis of the previous estimate 1

ˆ
t

  and 

the new output ti
r

, . t
K  is a coefficient to be determined called the estimation gain coefficient. The 

quantity )ˆ(
1,, 


ttmti

rr   is called the correction term. Since the estimator is unbiased regardless of what 

value of t
K  we use, we must choose some optimality criteria in order to determine t

K . The optimality 

criterion that we choose to minimize is the sum of the variances of the estimation error at time t . We 

use the RLS algorithm given in the appendix following section 3.3 of Simon (2006) for the purpose of 

RLS  estimation. Compared to most of its contestants, the RLS demonstrate extremely fast 

convergence. However, this benefit comes at the cost of high computational complexity, and 

potentially poor tracking performance when the "true system" changes. The detail RLS algorithm 

(Algorithm 1) is given in appendix. 

3.2. LMS 

The LMS is an adaptive algorithm which incorporates an iterative procedure that makes successive 

corrections to the weight vector in the direction of the negative of the gradient vector which eventually 

leads to the minimum mean square error. Compared to other algorithms LMS algorithm is relatively 

simple; it does not require correlation function calculation nor does it require matrix inversions. Although 

the LMS algorithm is very simple in computational terms, its mathematical analysis is profoundly 

complicated because of its stochastic and nonlinear nature. The stochastic nature of the LMS technique 

manifests itself in the fact that in a stationary environment, and under the assumption of a small step-size 

parameter, the method executes a form of Brownian motion. We have used LMS algorithm given below 

following Equation 8 of Nazin and Ljung (2002) which demonstrated a parameter estimation technique 

using LMS filter. The detail LMS algorithm (Algorithm 2) is given in appendix. 

3.3. AKF and their modifications 

Ordinary state estimation methods require nearly complete knowledge of the “signal model” 

which includes system model, measurement model, covariance of process noise (Q) and covariance 

of measurement noise (R). The estimation would be optimal only when the “signal model” is known 
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with acceptable accuracy. When such accurate model is not available, one may use adaptive 

estimators like AKF (Mehra, 1972). In the present work, variants of AKF would be employed to 

filter financial time series data. In such applications covariance matrices Q and/or R are usually 

unknown. The AKF would be used in such restricted situations and the nominal (noise-free) process 

and observation models would be assumed to be known. 

Many KF applications for  estimation (Gastaldi and Nardecchia, 2003) assume the Q and R to 

be known to the filter. However, in reality, such assumptions are not correct. Over the past few 

decades AKF algorithms have been intensively investigated to reduce the influence of the Q and R 

definition errors. However, applications of AKF to financial time series are rare. In the present work 

we characterize one of the recent AKF techniques found successful in GIP/INS applications 

developed by Mohamed and Schwarz (1999), Ding et al. (2007), Almagbile et al. (2010) and 

Senyurek et al. (2014). A total of five AKF algorithms have been characterized and modifications of 

those algorithms have also been proposed to address the failures. 

The simple state-space representation of a dynamical system is given by 

ttttt dxHy             (3) 

111   ttttt wcxFx           (4) 

where ty  is the output, tx  is the state variable, tH  is known time varying output transition 

coefficient, tF  is the state transition coefficient and td  is known feedback (additive constant) at 

time t. Also tw
 
is a serially uncorrelated zero mean process noise with covariance tQ , and t  is 

serially uncorrelated zero mean output noise with covariance tR  at time t. 

Define innovation sequence as:  

tttttt dxHyv  1|            (5) 

and the residual sequence as:  

ttttt dxHy  ˆ            (6) 

We can write from Equation (5) that: 

 ttttttttt dxHdxHv  1|)(  ttttt xxH   )( 1|      (7) 

Covariance matching principles (Mehra, 1972) give: 

}{}{ 1| tttttttt EHPHvvE  
 = ttttt RHPH 1|       (8) 

when }{ ttvvE   is available, the covariance of the observation noise tR  can be estimated directly 

from the equation: 
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
  ttttttt HPHvvER 1|}{ˆ =










 ttttit

m

i

it HPHvv
m

1|

1

0

1
      (9) 

where m is the estimation window size and for Equation (9) to be valid, the innovation sequence has 

to be ergodic and stationary over the m steps. 

Mohamed and Schwarz (1999) and Senyurek et al. (2014) used innovation based adaptive 

estimation techniques which give tttt KCKQ  ˆˆ , where 
it

m

i

itt vv
m

C 






 

1

0

1ˆ  and tK  is the Kalman 

gain at time t. This Q is formulated using maximum likelihood based technique. To improve the 

robustness of the adaptive filtering algorithm, a new process noise scaling method is proposed by 

Ding et al. (2007) given by: 

1 tt QQ  where 
'

1|

1

1

0

'1

tttt

t

m

i

ititm

HPH

Rvv









 




        (10) 

Adaptive estimation of R is associated with the Q due to the fact that the derivation is based on 

the KF process. This can be noticed from (9), that in order to estimate tR , the calculation of the 

predicted state covariance 1| ttP  has used the tQ . The normal practice is to fix one, say Q, and 

estimate the other one (i.e. R). The variation of the AKF algorithms in this way should be as follows: 

(1) R known and Q unknown (QAKF), (2) Q known and R unknown (RAKF), (3) Q unknown with 

known R at first (QRAKF), (4) R unknown with known Q at first (RQAKF) and (5) Q and R both 

simultaneously unknown (SRQAKF). Among these variations, the first two concepts have been 

introduced by Ding et al. (2007) but without formal algorithmic representations. Last three 

techniques are newly proposed here with formal algorithmic approach. The following sub-sections 

present and modified the above algorithms for a first order financial state-space model. 

3.3.1. Modified QAKF algorithm 

Algorithm QAKF is developed with the assumption that the R is known. The algorithm 

concerns about estimating adaptive Q with the Q adaptation formula given in (10). Estimated Qs are 

used in the next KF iterations. The detail QAKF algorithm (Algorithm 3) is given in appendix. 

To deal with parameter inconsistency problem (Q become negative after time iterations) arrived 

while characterizing this QAKF through simulation study and also in empirical explorations (Das and 

Ghoshal, 2010) the following modification is introduced. The detail MQAKF algorithm (Algorithm 4) 

is given in appendix. 

3.3.2. Modified RAKF algorithm 

Algorithm RAKF is developed with the assumption that the Q is known. The algorithm is 

concerned about estimating time evolving R with the R adaptation formula given in (9). Estimated 

R’s are used in the next filter iterations. The parameter inconsistency problem is also taken place here 

(R becomes negative while characterizing through simulation and empirically) and corresponding 

new modification is introduced. The detail MRAKF algorithm (Algorithm 5) is given in appendix. 
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3.3.3. Modified QRAKF algorithm 

This is one of the proposed algorithms when both Q and R have to be adapted. Algorithm QRAKF 

is developed with the assumption that the R is known at the first iteration cycle and goes on estimating 

unknown adaptive Q using formulae in (10). The next iteration cycle deals with estimating adaptive R 

using formulae in (9) assuming it as unknown where estimated Q in the last iteration is used in this 

iteration. Similarly, the next iteration concerns estimating Q where estimated R in the last iteration is used 

in this iteration. This algorithm also suffers from parameter inconsistency problem and corresponding 

modified version MQRAKF is developed and presented in Algorithm 6 at appendix. 

3.3.4. Modified RQAKF algorithm 

This is another proposed algorithm where both Q and R have to be estimated. Algorithm 

RQAKF is developed with the assumption that Q is known at the first iteration and concerns on 

estimating unknown R using formulae in (9). The next iteration deals with estimating Q using 

formulae in (10) assuming it as unknown where estimated Q in the last iteration is used in this 

iteration. Similarly, the next iteration concerns estimating R where estimated Q in the last iteration is 

used in this iteration. This RQAKF also suffers from the same problem like earlier and hence its 

modified version MRQAKF is developed and presented in Algorithm 7 at appendix. 

3.3.5. Modified SRQAKF algorithm 

Algorithm SRQAKF is developed, likewise (Das and Ghoshal, 2010), with the assumption that 

both the Q and R are not known at the first iteration and concerns on first estimating unknown 

adaptive R estimation using formulae in Equation (9) and then estimating unknown adaptive Q 

estimation using formulae in Equation (10) where estimated R in this iteration is used. Since Q 

calculation needs the value of R, we estimated R before Q estimation where estimated value of R is 

used. The same parameter inconsistency problem (Q and R both become negative) occurred in this 

case also and hence it is modified as MSRQAKF and presented in Algorithm 8 at appendix. 

4. Empirical investigations 

4.1. Data source and preparation 

The stock indices data from National Stock Exchange (NSE) of India has been collected from NSE 

website (http://www.nseindia.com). The daily closing data during 1st January, 2001 to 31
st
, December, 

2008, total of 2003 days data, are considered for the study. The stock market indices are reasonably 

representative of a mixture of industry sectors and trading activity mostly revolves around the stocks 

comprising the indices. The sectoral indices, suitably designed portfolios of equities from specific sector, 

are considered as representatives of portfolios and gross index Nifty (S&P CNX NIFTY) data are fair 

representative of the diversified market together. The considered sectoral indices are Bank (BANK 

NIFTY), Midcap (CNX MIDCAP), Defty (S&P CNX DEFTY) and Junior (CNX NIFTY JUNIOR). The 

literature on formation and composition of the selected indices are available on NSE websites. 
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4.2. Results and discussions 

4.2.1. OLS 

OLS was used to estimate  of the four considered portfolios (viz. Bank, Midcap, Defty and 

Junior) with respect to market index Nifty. The results are tabulated in table 1. 

Table 1. Empirical  estimates of four considered indices by OLS. 

Year 

Index 

Bank Midcap Defty Junior 

2001 0.6216 0.7969 0.9902 0.6810 

2002 0.4810 0.6589 1.0026 0.5961 

2003 0.4452 0.7809 0.9680 0.6817 

2004 0.6464 0.8582 −0.0498 0.7970 

2005 0.5625 0.8204 −0.0842 0.7369 

2006 0.6862 0.8123 0.9230 0.7191 

2007 0.6442 0.9402 0.9003 0.8012 

2008 0.7152 0.9755 0.8855 0.8182 

2001–2008 

(Over 8 Years) 0.6402 0.8605 0.7422 0.7563 

4.2.2. RLS 

Figure 1 depicts the  estimates using RLS with initialization 
0

  0.2 and 0
P  = 1. Selected 

indices  are estimated with respect to Nifty. 

 

Figure 1.  estimates of selected indices using RLS filter. 
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It is observed that the  estimates emerged by the RLS technique with suitable parameter choice 

for all four indices are comparable to one another. The range of  estimates as evident from the 

figure is 0.5 to 1.2. It is also noticed that the estimated  of three indices is close to unity, where as 

the Defty index behaves differently. Defty incorporates the Dollar-Rupee exchange rates and 

therefore is very likely affected by factors other than the security market. Its behaviour may differ 

from other indices. 

It may also be noted that the RLS is in effect, a degenerate form of KF, with the process noise 

set zero and the system matrix equaling unity. Both of these favour near constant value of the state 

variable and effectively smoothen out fluctuations. 

4.2.3. LMS 

LMS adaptive filter is relatively simple and the computational complexity of this algorithm is 

low compared to its competitors. It has convergence property as well. Moreover, it does not require 

correlation function calculation nor does it require matrix inversions. Numerical experiments were 

carried out with above LMS algorithm for empirical  estimation of the selected Indian indices. 

Figure 2 presents the  estimates using LMS estimator where  = 20 (suitable choice of  to get the 

convergence results of the  estimates). Selected indices  are estimated here with respect to Nifty 

returns ( tm
r

, ). Such choice of  provided the  estimates comparable to that provided by other 

competing estimators. 

It is observed that the  estimates emerged by the LMS technique for all four indices are comparable 

to one another with suitable parameter choice. The Figure 1 and 2 show that the LMS  estimates are 

very similar to the RLS  estimates for all considered indices except for some initial ‘burn-in’ period. 

 

Figure 2.  estimates of selected indices using LMS filter where  = 20. 
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titmtiiti rr ,,,,  
          (11) 

tititti F ,1,,              (12) 

where tir ,  is the single asset return, tmr ,  is the return of the market index in which the asset is 

traded at time t, i  is the additive constant, ti,  is the beta coefficient which indicates the 

sensitivity of tir ,  to the changes in tmr , , ti,  is the output noise component at time t. 

Comparing state-space model of Equations (11) and (12) with state-space model Equations (3) 

and (4), we have used the following for our simulation experiments: ittx  ,               

1Txmtt rH 1 , 02.0 ittd  , 0tc , )var( ittQ  , )var( ittR  , and 1F . Return     is taken 

from Gaussian distribution since it is known that any distribution can be approximated with a sum or 

mixture of Gaussian distributions (Gastaldi and Nardecchia, 2003; Das and Ghoshal, 2010). 

All the modified AKF methods have been applied and thus estimated  have been compared 

with the observed  from applying standard ordinary KF. In all these cases considered system and 

filtering parameter set are F = 1, 0  = 0.5, d = α = 0.02, 0P  = 0.05. The chosen values of Q are 

given in the appropriate section below. 

Investigation with MQAKF: The following graphs of Figure 3 present the  estimates using 

MQAKF with R = 0.01 where initial considered value of Q being 0.01 in comparison to ordinary KF 

with Q = 0.01 and R = 0.01 for all four considered indices.
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Figure 3. Comparison of estimated  using MQAKF and KF for Bank (top-left), Midcap 

(top-right), Defty (bottom-left) and Junior (bottom-right). 
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Figure 4. Comparison of estimated  using MRAKF and KF for Bank (top-left), Midcap 

(top-right), Defty (bottom-left) and Junior (bottom-right). 
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Figure 5. Comparison of estimated  using MQRAKF and KF for Bank (top-left), 

Midcap (top-right), Defty (bottom-left) and Junior (bottom-right). 

Here again it may be seen that the  estimates by MQRAKF exhibits substantial high frequency 

noise. However, the mean value tracks the KF value well. 

Investigation with MRQAKF: The following graphs of Figure 6 present the  estimates using 

MRQAKF where initial considered value of Q and R both being 0.005 ( = 0.01/2) in comparison to 

standard ordinary KF with Q = 0.01 and R = 0.01 for all four considered indices. 
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Figure 6. Comparison of estimated  using MRQAKF and KF for Bank (top-left), 

Midcap (top-right), Defty (bottom-left) and Junior (bottom-right). 

Here again it may be seen that the adaptive (MRQAKF) filter output of  estimate exhibits 

substantial high frequency noise. However, the mean value tracks the KF value well. 

Investigation with MSRQAKF: The following graphs of Figure 7 present the  estimates 

using MSRQAKF where initial considered value of Q and R both being 0.005 ( = 0.01/2) in 

comparison to ordinary KF with Q = 0.01 and R = 0.01 for all four considered indices. 
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Figure 7. Comparison of estimated  using MSRQAKF and KF for Bank (top-left), 

Midcap (top-right), Defty (bottom-left) and Junior (bottom-right). 

Here again it may be seen that the adaptive (MSRQAKF) filter output of  estimate exhibits 

substantial high frequency noise. However, the mean value tracks the KF value well. However, the 

amplitude of the noise has reduced considerably compared to MQAKF, MQRAKF and MRQAKF. 

4.3. Analysis of empirical results 

4.3.1. Backtesting VaR 

To evaluate the goodness of a VaR model, banks, financial institutions as well as regulators use 

backtesting to confirm their judgments. Backtesting a VaR model simply means checking whether the 

realized daily returns are consistent with the corresponding daily VaR. Necessary literature and 

interpretation principles on backtesting VaR using “Traffic Light” are explained and used in (Berardi et 

al., 2002; Das et al., 2008). VaR estimations are carried out using the formula given in Equation 1 in this 

present context. The results of the backtesting analysis are reported in the table 2. The calculated number 

of violations for every type of VaR is expressed as percentage over the total number of VaR estimations 

spanned during the whole considered period. VaR estimation and corresponding backtesting is reported 

for the considered least squares (OLS, RLS and LMS), KF and modified AKF  estimation techniques at 

95% and 99% confidence level and 1 day and 10 days time horizon. The considered value of Q or initial 

Q is 0.01 where as two values (0.01 and 1) of R or initial R is taken care while reporting backtesting. The 

corresponding traffic lights of backtesting methods are also indicated in the said table. 
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Table 2. Results of VaR backtesting (% violation) of conventional and modified methods. 

Methods 

95% 99% 

1-day TL 10-days TL 1-day TL 10-days TL 

OLS (Over 8 Years) 8.4416 R 0.4995 G 4.9451 R 0.0999 G 

RLS 6.0440 R 0.1499 G 3.2967 Y 0 G 

LMS 5.4945 R 0.1998 G 2.7473 Y 0 G 

KF 

Q  = 0.01 

R  = 1 10.539 R 0.6494 G 5.5445 R 0.1998 G 

R  = 0.01 7.1928 R 0.1998 G 3.8961 Y 0 G 

MQAKF 

0Q  = 0.01 

R  = 1 4.1958 R 0.5994 G 2.3477 Y 0.2997 G 

R  = 0.01 3.5964 Y 0.4496 G 1.9481 Y 0.1499 G 

MRAKF 

Q  = 0.01 

0R  = 1 
9.2907 R 1.7982 Y 5.5944 R 1.0989 G 

0R  = 0.01 
8.5914 R 1.5984 G 5.0949 R 1.0989 G 

MQR-AKF 

0Q  = 0.01/2 

0R  = 1/2 
5.4446 R 0.6494 G 2.9471 Y 0.2997 G 

0R  = 0.01/2 
4.4955 R 0.3996 G 2.2478 Y 0.1499 G 

MRQ-AKF 

0Q  = 0.01/2 

0R  = 1/2 
8.0919 R 1.3487 G 4.5954 R 0.8492 G 

0R  = 0.01/2 
7.5425 R 1.1489 G 4.2458 R 0.7493 G 

MSRQ-AKF 

0Q  = 0.01 

0R  = 1 
9.1409 R 0.7992 G 5.2947 R 0.3497 G 

0R  = 0.01 
8.4416 R 0.7493 G 4.8452 R 0.3996 G 

Note: TL: Traffic Light (0 < ‘G-Green’ < 1.6, 1.6 < ‘Y-Yellow’ < 4, 4 < ‘R-Red’). 

The percentage violations of all the considered methods tends to decrease considerably from 1 

day to 10 day horizon due to the fact that the relation between the daily volatility and the volatility 

for a longer time period is smaller (the coefficient     is commonly used for this purpose). It is 

also noted that RLS shows better performance than OLS as expected due to its dynamic nature. 

Backtesting performances of KF and modified AKF methods show that the said performance is better 

while Q and R are equal or initial Q and initial R are equal wherever the case may be. Backtesting 

results also show that the above considered techniques are highly acceptable and recommended 

while considering 10 days VaR. For 1 day VaR estimation and backtesting most of the considered 

methods are not recommended from the above results except a few mildly recommended like RLS, 

LMS, KF (0.01 equals Q and R), MQAKF and MQRAKF in case of 99% confidence level. MQAKF 

noticed to be the best performer in the considered adaptive AKF family. Surprisingly, MRAKF 

shows worse results in respect to empirical VaR backtesting compared to other modified AKF 

methods. These noted unnatural behaviours may be due to the typical portfolio composition 

considered for the VaR backtesting. 
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4.3.2. Expected shortfall analysis 

Table 3. Expected shortfall of VaR estimates of conventional and modified methods. 

Methods 

95% 99% 

1 day 10 days 1 day 10 days 

OLS (Over 8 Years) –0.0365 –0.0821 –0.0452 –0.1108 

RLS –0.0419 –0.1045 –0.0516 0 

LMS –0.0431 –0.0969 –0.0541 0 

KF 

Q  = 0.01 

R  = 1 –0.0327 –0.0739 –0.0418 –0.0858 

R  = 0.01 –0.0368 –0.0969 –0.0436 0 

MQAKF 

0
Q  = 0.01 

R  = 1 0 –0.0517 0 0 

R  = 0.01 0 –0.0387 0 0 

MRAKF 

Q  = 0.01 

0
R  = 1 

–0.0275 –0.0229 –0.0285 –0.0151 

0
R  = 0.01 

–0.0280 –0.0154 –0.0283 –0.0099 

MQRAKF 

0Q  = 0.01/2 

0
R  = 1/2 

–0.0339 –0.0469 –0.0378 –0.0310 

0R  = 0.01/2 
–0.0363 –0.0319 –0.0393 –0.0084 

MRQAKF 

0Q  = 0.01/2 

0
R  = 1/2 

–0.0303 –0.0270 –0.0317 –0.0164 

0
R  = 0.01/2 

–0.0312 –0.0166 –0.0317 0.0081 

MSRQAKF 

0Q  = 0.01 

0R  = 1 
–0.0307 –0.0406 –0.0344 –0.0263 

0R  = 0.01 
–0.0316 –0.0237 –0.0345 0.0136 

The table 3 presents the ES of the VaR estimates of the considered portfolio at the same considered 

level of confidence and time horizon. ES analysis shows that all the least square methods (OLS, RLS and 

LMS) show performance very nearby to one another specific to confidence level and time horizon. RLS 

and LMS both provided the better performance than OLS at 99% confidence and 10 days horizon. ES 

results do not uniformly decreases unlike VaR backtesting with the increase of time horizon. Moreover, 

KF and modified AKF methods did not shown uniformly better or worse results with equal and unequal 

Q and R or initial Q and initial R combinations unlike VaR backtesting. The ES analysis also shows that 

the effect of change of R or initial R is much higher in case of 10 days ES than 1 day ES. However, it is 

noted that MQAKF is the overall best performer with respect to ES analysis. 
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4.3.3. In-sample forecasting performance analysis 

 

 

 

Figure 8. Comparison of in-sample forecasting performance (using RMSE and MAE). 
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In-sample forecasting accuracy (Mergner, 2008) of returns is determined by two measures namely 

mean absolute error (MAE) and the root mean squared error (RMSE) given by 

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RMSE where T is the number of observations and tir ,ˆ  denotes the series of return 

forecasts for sector i, calculated from the estimated time varying  series. 

The results in Figure 8 indicate that time-varying sector  can suitably be described by a 

random walk process estimated via both the least square family and the adaptive KF family. The 

in-sample forecasting performance results generally support all the considered approaches. It is noted 

that the least square family outperformed over KF family in respect of in-sample forecasting 

performances. In considerations of KF family of estimators, it is observed that change of R or initial 

R did not affect much of the in-sample performance of the filters. 

5. Conclusion 

The empirical analysis presented in this work contributes to the investigation of time-varying  

for four Indian industry (sectoral) portfolios designed by NSE of India with respect to its gross index 

Nifty. The results of these investigations confirmed previous findings that sector s are not constant 

but time varying. Though RLS and KF have earlier been used, but applications of LMS and modified 

AKFs method for  estimation are novel as far as our knowledge goes. Noise covariance adaptation 

based Modified AKF techniques are empirically characterized and show that Indian market  can be 

tracked and estimated successfully without assuming the noise covariance (i.e. uncertainties). The 

performance of the modified AKF techniques are compared with KF estimates and revealed that the 

said modified AKF techniques with unknown process and observation noise covariances perform at 

least as good as (or better than) KF (where both noise covariances Q and R are assigned a priori from 

previous knowledge). 

Variations of observed empirical  estimates show similar trends to that of earlier workers using 

KF.  trends obtained from Modified AKFs generally show larger and more frequent fluctuations. 

Among these techniques two broad categories may be formed according to the trends of observed 

empirical  estimates. MRAKF and MSRQAKF belongs to a category (say Category 1) where as 

other techniques (MQAKF, MQRAKF and MRQAKF) belong to a different category (say Category 

2). Fluctuations observed in the Category 1 are much higher than that in the Category 2. Earlier 

literature (Shah and Moonis, 2003) reporting  estimates on Indian market shows  estimates closer 

to the Category 1. It should also be noted that the range of variations of  estimates by Category 2 is 

much higher than that of Category 1. Whether the larger fluctuations in  estimates can be utilized 

for better predictions of say VaR needs further investigations.  

It is also found that any single method could not provide best results across all three performance 

measures. RLS and LMS both provided the best performance among all methods where as MQAKF 

provided best performance in Modified AKF family with respect to VaR backtesting. MQAKF also 

provided the best performance with respect to ES analysis among all. Least square methods provided 

the best performance with respect to in-sample forecasting performance analysis. So any single 

technique could not be recommended for the empirical  and corresponding VaR estimation. Though 

in-sample return forecasting performance is found capable of evaluating the beta estimation 

performances since considered time duration is of ten years length, out-of-sample forecasting 
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performances analysis may also be suggested for better realizations. Loss functions and other statistical 

tests oriented VaR analysis may also be suggested as future work besides VaR backtesting and expected 

shortfall analysis having comprehensible indications of beta estimation performances.  
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