Citation: Gabriel Frahm. How often is the financial market going to collapse?[J]. Quantitative Finance and Economics, 2018, 2(3): 590-614. doi: 10.3934/QFE.2018.3.590
[1] | Adrover J (1998) Minimax bias-robust estimation of the dispersion matrix of a multivariate distribution. Ann Stat 26: 2301–2320. |
[2] | Aeschliman C, Park J, Kak A (2010) A novel parameter estimation algorithm for the multivariate t-distribution and its application to computer vision, in K. Daniilidis, P. Maragos, N. Paragios (editors), European Conference on Computer Vision 2010, Springer, 594–607. |
[3] | Artzner P, Delbaen F, Eber JM, et al. (1999) Coherent measures of risk. Math Financ 9: 203–228. doi: 10.1111/1467-9965.00068 |
[4] | Barndorff-Nielsen O, Kent J, Sørensen M (1982) Normal variance-mean mixtures and ɀ distributions. Int Stat Rev 50: 145–159. doi: 10.2307/1402598 |
[5] | Bingham N, Kiesel R (2002) Semi-parametric modelling in finance: theoretical foundation. Quant Financ 2: 241–250. doi: 10.1088/1469-7688/2/4/201 |
[6] | Bouchaud JP, Cont R, Potters M (1997) Scaling in stock market data: stable laws and beyond, in B. Dubrulle, F. Graner, D. Sornette (editors), Scale Invariance and Beyond, Proceedings of the CNRS Workshop on Scale Invariance, Les Houches, March 1997, EDP-Springer. |
[7] | Breymann W, Dias A, Embrechts P (2003) Dependence structures for multivariate high-frequency data in finance. Quant Financ 3: 1–14. doi: 10.1080/713666155 |
[8] | Cambanis S, Huang S, Simons G (1981) On the theory of elliptically contoured distributions. J Multivariate Anal 11: 368–385. doi: 10.1016/0047-259X(81)90082-8 |
[9] | Cont R (2001) Empirical properties of asset returns: stylized facts and statistical issues. Quant Financ 1: 223–236. doi: 10.1080/713665670 |
[10] | De Luca G, Rivieccio G (2012) Multivariate tail dependence coe_cients for Archimedean copulae, in A. Di Ciaccio, M. Coli, J. Ibanez(editors), Advanced Statistical Methods for the Analysis of Large Data-Sets, Studies in Theoretical and Applied Statistics, Springer, 287–296. |
[11] | Ding Z, Granger C, Engle R (1993) A long memory property of stock market returns and a new model. J Empir Financ 1: 83–106. doi: 10.1016/0927-5398(93)90006-D |
[12] | Dobrić J, Frahm G, Schmid F (2013) Dependence of stock returns in bull and bear markets. Dependence Modeling 1: 94–110. |
[13] | Dümbgen L, Tyler D (2005) On the breakdown properties of some multivariate M-functionals. Scand J Stat 32: 247–264. doi: 10.1111/j.1467-9469.2005.00425.x |
[14] | Eberlein E, Keller U (1995) Hyperbolic distributions in finance. Bernoulli 1: 281–299. doi: 10.2307/3318481 |
[15] | Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling Extremal Events (for Insurance and Finance), Springer. |
[16] | Engle R (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica 50: 987–1007. |
[17] | Fama E (1965) The behavior of stock market prices. J Bus 38: 34–105. doi: 10.1086/294743 |
[18] | Fang K, Kotz S, Ng K (1990) Symmetric Multivariate and Related Distributions, Chapman & Hall. |
[19] | Ferreira H, Ferreira M (2012) On extremal dependence of block vectors. Kybernetika 48: 988–1006. |
[20] | Frahm G (2004) Generalized Elliptical Distributions: Theory and Applications, Ph.D. thesis, University of Cologne. |
[21] | Frahm G (2006) On the extremal dependence coeffcient of multivariate distributions. Stat Probabil Lett 76: 1470–1481. doi: 10.1016/j.spl.2006.03.006 |
[22] | Frahm G (2009) Asymptotic distributions of robust shape matrices and scales. J Multivariate Anal 100: 1329–1337. doi: 10.1016/j.jmva.2008.11.007 |
[23] | Frahm G, Jaekel U (2010) A generalization of Tyler's M-estimators to the case of incomplete data. Comput Stat Data An 54: 374–393. doi: 10.1016/j.csda.2009.08.019 |
[24] | Frahm G, Jaekel U (2015) Tyler's M-estimator in high-dimensional financial-data analysis, in K. Nordhausen, S. Taskinen (editors), Modern Nonparametric, Robust and Multivariate Methods, Chapter 17, Springer, 289–305. |
[25] | Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coeffcient: properties and pitfalls. Insur Math Econ 37: 80–100. doi: 10.1016/j.insmatheco.2005.05.008 |
[26] | Frahm G, Junker M, Szimayer A (2003) Elliptical copulas: applicability and limitations. Stat Probabil Lett 63: 275–286. doi: 10.1016/S0167-7152(03)00092-0 |
[27] | Hettmansperger T, Randles R (2002) A practical affine equivariant multivariate median Biometrika 89: 851–860. |
[28] | Hult H, Lindskog F (2002) Multivariate extremes, aggregation and dependence in elliptical distributions. Adv Appl Probab 34: 587–608. doi: 10.1239/aap/1033662167 |
[29] | Joe H (1997) Multivariate Models and Dependence Concepts, Chapman & Hall. |
[30] | Jorion P (1985) International portfolio diversification with estimation risk. J Bus 58: 259–278. doi: 10.1086/296296 |
[31] | Junker M, May A (2005) Measurement of aggregate risk with copulas. Economet J 8: 428–454. doi: 10.1111/j.1368-423X.2005.00173.x |
[32] | Kelker D (1970) Distribution theory of spherical distributions and a location-scale parameter generalization. Sankhya A 32: 419–430. |
[33] | Kent J, Tyler D (1988) Maximum likelihood estimation for the wrapped Cauchy distribution. J Appl Stat 15: 247–254. doi: 10.1080/02664768800000029 |
[34] | Kent J, Tyler D (1991) Redescending M-estimates of multivariate location and scatter. Ann Stat 19: 2102–2119. doi: 10.1214/aos/1176348388 |
[35] | Laub P, Taimre T, Pollett P (2015) Hawkes processes, Technical report, Cornell University Library, arXiv:1507.02822. |
[36] | Mandelbrot B (1963) The variation of certain speculative prices. J Bus 36: 394–419. doi: 10.1086/294632 |
[37] | Markowitz H (1952) Portfolio selection. J Financ 7: 77–91. |
[38] | Maronna R, Yohai V (1990) The maximum bias of robust covariances. Commun Stat-Theor M 19: 3925–3933. doi: 10.1080/03610929008830422 |
[39] | McNeil A, Frey R, Embrechts P (2005) Quantitative Risk Management, Princeton University Press. |
[40] | Mikosch T (2003) Modeling dependence and tails of financial time series, in B. Finkenstaedt, H. Rootz´en (editors), Extreme Values in Finance, Telecommunications, and the Environment, Chapman & Hall. |
[41] | Nelsen R (2006) An Introduction to Copulas, Springer, 2nd edition. |
[42] | Paindaveine D (2008) A canonical definition of shape. Stat Probabil Lett 78: 2240–2247. doi: 10.1016/j.spl.2008.01.094 |
[43] | Rachev S, Mittnik S (2000) Stable Paretian Models in Finance, Wiley. |
[44] | Schmidt R (2002) Tail dependence for elliptically contoured distributions. Math Method Oper Res 55: 301–327. doi: 10.1007/s001860200191 |
[45] | Shorrocks A, Davies J, Lluberas R (2017) Global Wealth Databook 2017, Technical report, Credit Suisse Research Institute. |
[46] | Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges, Research report, University of Paris, Institute of Statistics, France. |
[47] | Tyler D (1983) Robustness and efficiency properties of scatter matrices Biometrika 70: 411–420. |
[48] | Tyler D (1987a) A distribution-free M-estimator of multivariate scatter Ann Stat 15: 234–251. |
[49] | Tyler D (1987b) Statistical analysis for the angular central Gaussian distribution on the sphere Biometrika 74: 579–589. |