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Abstract: Copula theory is used to investigate the phenomenon of extremal dependence. An analytical
expression for the extremal-dependence coefficient (EDC) of regularly varying elliptically distributed
random vectors is derived. The EDC represents a natural measure of systemic risk. Extreme value
theory is applied in order to estimate the systemic risk of the G–7 countries. The given results are
quite sensitive to the tail index of asset returns and thus a scenario analysis is conducted. In the worst
case, the probability that the entire market crashes during 10 years exceeds 50%. Hence, we must not
neglect the risk of a financial collapse during a relatively short period of time.
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1. Motivation

It is a stylized fact that the distribution of short-term asset returns exhibits heavy tails and tail
dependence. These phenomena, together with other well-known stylized facts that can be observed
for stocks, stock indices, foreign exchange rates, etc., are often reported in the literature during the
last decades (see, e.g., Bouchaud et al., 1997; Breymann et al.; 2003; Cont, 2001; Ding et al., 1993;
Dobri et al., 2013; Eberlein and Keller, 1995; Embrechts et al., 1997; Engle, 1982; Fama, 1965;
Frahm and Jaekel, 2015; Junker and May, 2005; Mandelbrot, 1963; McNeil et al., 2005; Mikosch,
2003). This work proposes a measure for systemic risk. For this reason, I focus on the G–7 countries,
i.e., Canada, France, Germany, Italy, Japan, UK, and USA. These countries represent the 7 largest
economies worldwide. According to Credit Suisse’s Global Wealth Databook (Shorrocks et al., 2017),
they accumulate almost 63% of the global net wealth. Hence, we can expect that the G–7 countries
have a major impact on the economic situation of each other country in the world.

Figure 1 shows the normal Q–Q plot of daily log-returns on the MSCI country index for Canada
from 1999-01-04 to 2018-03-02, which means that the chosen period covers the dot-com collapse at
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the beginning of 2000 and the financial crisis 2007–2008. The index points are based on USD total
returns and the number of observations is n = 4804. Figure 10 in the appendix completes this picture
by referring to France, Germany, Italy, Japan, UK, and USA. The QQ-plots reveal that the probability
of extremes is much higher than suggested by the normal distribution. Hence, the normal-distribution
hypothesis is highly misleading—at least if we refer to daily log-returns. Nowadays, this simple but,
nonetheless, far-reaching statement has become folklore in the finance literature.
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Figure 1. Normal Q–Q plot of daily log-returns from 1999-01-04 to 2018-03-02 on the
MSCI country index for Canada.

Which model is appropriate if we aim at taking heavy tails and tail dependence properly into
account? Figure 2 illustrates the joint distribution of the daily log-returns of Canada and France. The
scatter plot reveals the following effects:

1. The central region of the distribution seems to be normal or, at least, elliptically contoured,
2. there is a large number of outliers or extreme values,
3. extreme values typically occur simultaneously, and
4. their distribution is asymmetric.

The last point is based on the observation that the magnitude of extreme values on the lower left
appears to be larger compared to the upper right of the scatter plot. The same effects can typically be
observed when comparing all G–7 countries with each other (see Figure 11, which can be found in the
appendix).

Let F be the (cumulative) distribution function of some random variable, whereas F−1 denotes the
associated quantile function, i.e., p 7→ F−1(p) := inf

{
x ∈ R : F(x) ≥ p

}
. More specifically, let X =

(X1, X2, . . . , X7) be the vector of daily log-returns on the MSCI indices for the G–7 countries. Further,
let Fi be the distribution function of the log-return on Country i = 1, 2, . . . , 7. The event Xi ≤ F−1

i (p)
with p ∈ (0, 1) is said to be a p-shortfall, where p is the corresponding shortfall probability.∗ The

∗If Fi is strictly increasing, then −F−1
i (p) is the value at risk of Xi at the confidence level 1 − p (Artzner et al., 1999).
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Figure 2. Scatter plot of daily log-returns from 1999-01-04 to 2018-03-02 on the MSCI
country indices for Canada and France (blue points). The red contours represent the deciles
of the bivariate normal distribution that is fitted to the data.

expected number of shortfalls during m ∈ N trading days amounts to mp and thus, on average, a p-
shortfall occurs after p−1 trading days. Hence, the event Xi ≤ F−1

i (p) is said to be a p−1-day shortfall
and, correspondingly, F−1

i (p) represents a p−1-day quantile.

From time to time the financial market collapses. Figure 3 shows the historical log-performance of
each G–7 country index from 1999-01-03 to 2018-03-02. The indices are normed at the beginning of
the observation period. It reveals that the G–7 countries are typically affected by the same economic
shocks. However, there are a few exceptions. For example, Italy had a drawdown in 1999, while the
other countries performed well during this period. Moreover, the recession in Europe from mid 2014
to the end of 2015 cannot be observed neither in Japan nor in the USA.

Figure 4 contains the number of G–7 countries that had a 200-day shortfall at the same trading day.
We can see the financial turmoil after the dot-com bubble at the end of the 20th century and during
the financial crisis 2007–2008. On November 6, 2008, the International Monetary Fund predicted a
worldwide decrease of the gross domestic product for the developed economies and, concomitantly, all
G–7 countries crashed during this trading day. Additionally, there are some simultaneous shortfalls in
2011, which occurred due to the Greek debt crisis.

Simultaneous shortfalls are not evenly spread over time. It is obvious that the systemic risk prevails
in times of crisis, i.e., the probability of concomitant shortfalls substantially increases after the financial
market collapses. Put another way, simultaneous shortfalls appear in clusters. In this work, I ignore
the time-series aspect of simultaneous shortfalls and focus on the cross-sectional dependence structure
of extreme asset returns. This can be done by means of extreme value theory. The basic methodology
is presented in the next section.
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Figure 3. Natural logarithm of the G–7 country indices from 1999-01-03 to 2018-03-02.

Figure 4. Number of G–7 countries that had a 200-day shortfall at the same trading day from
1999-01-04 to 2018-03-02.

2. Theoretical background

The phenomenon that extreme asset returns typically occur simultaneously is referred to as tail
dependence, which is part of copula theory and extreme value theory. The reader can find a profound
treatment of copula theory in Joe (1997) and Nelsen (2006), whereas Mikosch (2003) gives a nice
overview of extreme value theory. I recapitulate some basic tools of copula theory and of extreme
value theory in this section.
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2.1. Tail vs. extremal dependence

The reader needs no specific knowledge about copulas to understand the following arguments, but at
least he should be aware of Sklar’s theorem (Sklar, 1959): Let F be the joint distribution function of any
random vector X = (X1, X2, . . . , Xd) and Fi the (marginal) distribution function of Xi (i = 1, 2, . . . , d).
Then there exists a distribution function C : [0, 1]d → [0, 1] such that

F(x) = C
(
F1(x1), F2(x2), . . . , Fd(xd)

)
for all x = (x1, x2, . . . , xd) ∈ Rd. The function C is referred to as the copula of X. It represents the joint
distribution function of the random vector U =

(
U1,U2, . . . ,Ud

)
with Ui := Fi(Xi). If the marginal

distribution functions of X are continuous, each component of U is uniformly distributed on [0, 1] and
C is unique on [0, 1]d. I maintain this assumption throughout this work.

The lower tail-dependence coefficient (TDC) of a pair of random variables Xi and X j (Joe, 1997) is
defined as

λL := lim
p↘ 0
P
(
U j ≤ p |Ui ≤ p

)
= lim

p↘ 0

Ci j(p, p)
p

,

where Ci j is the copula of (Xi, X j). It is implicitly assumed that the given limit exists. Correspondingly,
the upper TDC is defined as

λU := lim
p↗ 1
P
(
U j > p |Ui > p

)
= lim

p↗ 1

1 − 2p + Ci j(p, p)
1 − p

.

Loosely speaking, the lower TDC is the probability that Country j crashes given that Country i crashes
or, equivalently, that Country i crashes given that Country j crashes. If λL or λU is positive, then Xi and
X j are said to be (lower or upper) tail dependent.

The TDC is a very popular risk measure. However, it is defined only for the bivariate case and so,
when applying this measure, we must restrict to some pair of G–7 countries. There are several ways
to extend the concept of tail dependence to the case of d > 2 (De Luca and Rivieccio, 2012; Ferreira
and Ferreira, 2012). In this work, I focus on the notion of extremal dependence (Frahm, 2006). The
extremal-dependence coefficient (EDC) introduced by Frahm (2006) seems to be a natural measure of
systemic risk, i.e., the risk of a collapse of the entire financial market.

In the following, I use the shorthand notation

min ζ := min
{
ζ1, ζ2, . . . , ζd

}
and max ζ := max

{
ζ1, ζ2, . . . , ζd

}
,

where ζ = (ζ1, ζ2, . . . , ζd) is any random vector.

Definition 1 (Lower and upper EDC). The lower EDC of X is defined as

εL := lim
p↘ 0
P
(

max U ≤ p | min U ≤ p
)
,

whereas its upper EDC is defined as

εU := lim
p↗ 1
P
(

min U > p | max U > p
)
.
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We can also write, equivalently,

εL = lim
p↘ 0

P
(

max U ≤ p
)

P
(

min U ≤ p
) and εU = lim

p↗ 1

P
(

min U > p
)

P
(

max U > p
) .

Hence, the lower EDC can be considered the probability that the entire market collapses given that
some part of the market crashes. Put another way, it is the probability that the whole system breaks
down if some part of the system fails. When this happens, the fundamental principle of modern
portfolio theory (Markowitz, 1952), i.e., diversification, does no longer work. In this case, even
international diversification (Jorion, 1985) does not help much.

Whenever εL or εU is positive, the components of X are said to be (lower or upper) extremal
dependent. It can be shown that

εL = lim
p↘ 0

C(p, p, . . . , p)

1 −C(1 − p, 1 − p, . . . , 1 − p)
and εU = lim

p↗ 1

C(1 − p, 1 − p, . . . , 1 − p)
1 −C(p, p, . . . , p)

,

where C is the survival copula associated with C (Frahm, 2006). This is defined by

u 7−→ C(u) :=
∑
I⊆M

(−1)|I|C
(
(1 − u1)11∈I , (1 − u2)12∈I , . . . , (1 − ud)1d∈I

)
,

where u = (u1, u2, . . . , ud) ∈ [0, 1]d, M :=
{
1, 2, . . . , d

}
, and 1 denotes the indicator function. Since the

marginal distribution functions of X are continuous, C represents the copula of −X.
For convenience, I recapitulate some basic results concerning the TDC and the EDC, which can be

found in Frahm (2006).

Proposition 1. Let λL and λU be the tail-dependence coefficients of any pair of random variables.
Further, let εL and εU be the corresponding extremal-dependence coefficients. Then we have that

εL =
λL

2 − λL
and εU =

λU

2 − λU
.

Hence, the EDC is a convex function of the TDC and we have that εL < λL for all 0 < λL < 1 as
well as εU < λU for all 0 < λU < 1 (see Figure 5).

Proposition 2. Let X be a d-dimensional random vector with d > 1 and Xs any subvector of X. Further,
let εL(X) be the lower EDC of X and εL(Xs) be the lower EDC of Xs. Similarly, let εU(X) be the upper
EDC of X and εU(Xs) be the upper EDC of Xs. Then we have that

εL(X) ≤ εL(Xs) and εU(X) ≤ εU(Xs).

This means that if we extend our economy by adding some country, the extremal dependence cannot
increase. In general, it decreases after an extension of the market because the greater the number of
countries, the more unlikely it is that the entire world collapses, given that (at least) one country crashes.
Nonetheless, we should keep in mind that the probability that some country falls into the abyss usually
increases the larger the economy.

Proposition 1 and Proposition 2 imply that

εL(X) ≤ εL(Xi, X j) =
λL(Xi, X j)

2 − λL(Xi, X j)
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Figure 5. EDC of a 2-dimensional random vector as a function of the TDC.

for i, j = 1, 2, . . . , d, where λL(Xi, X j) denotes the TDC of Xi and X j. Hence, the lower EDC of every
2-dimensional subvector of X is positive whenever the lower EDC of X is positive, which means that
the lower TDC of each 2-dimensional subvector must be positive, too. Conversely, if the TDC of any
subvector (Xi, X j) is zero, the components of X cannot be extremal dependent. The same arguments
apply to the upper risk measures. To sum up, if the components of a d-dimensional random vector
X = (X1, X2, . . . , Xd) are extremal dependent, then Xi and X j are tail dependent for i, j = 1, 2, . . . , d, but
if Xi and X j are not tail dependent for any i, j ∈

{
1, 2, . . . , d

}
, then neither the components of X can be

extremal dependent.

Let the copula C be symmetric in the sense that C(u) = C(u) for all u ∈ [0, 1]d. This sort of
symmetry shall be referred to as transpositional symmetry. If C is transpositionally symmetric, its
“lower left corner” coincides with its “upper right corner,” in which case the lower EDC of X
corresponds to its upper EDC. Then we can simply write ε ≡ εL = εU. A d-dimensional random
vector X has a transpositionally symmetric copula if the distribution of X is symmetric, i.e., if there
exists a location vector µ ∈ Rd such that X − µ has the same distribution as −(X − µ).

The components of a random vector X = (X1, X2, . . . , Xd) are said to be comonotonic if their
dependence is perfectly positive. More precisely, X1, X2, . . . , Xd are comonotonic if and only if there
exist a random variable V and d strictly increasing functions of the form fi : R → R such that
Xi = fi(V) for i = 1, 2, . . . , d. In this case, the copula of X corresponds to the “minimum copula”
u 7→ min u, which is called Fréchet-Hoeffding upper bound (Nelsen, 2006). Then both the lower and
the upper EDC of X equal 1. By contrast, if the components of X are mutually independent, the
copula of X corresponds to the “product copula” u 7→

∏d
i=1 ui, in which case both the lower EDC and

the upper EDC of X equal 0. Finally, if the dependence between two components Xi and X j is
perfectly negative, they are said to be countermonotonic. More precisely, Xi and X j are
countermonotonic if and only if there exist a random variable V , a strictly increasing function
f : R → R, and a strictly decreasing function g : R → R such that Xi = f (V) and X j = g(V). The
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copula of Xi and X j corresponds to the Fréchet-Hoeffding lower bound (ui, u j) 7→ max
{
ui + u j − 1, 0

}
(Nelsen, 2006, p. 11). Then both the lower EDC and the upper EDC of (Xi, X j) equal 0. Hence, in the
bivariate case, the EDC does not distinguish between countermonotonicity and independence.

2.2. Regular variation of elliptical distributions

It is well-known that the multivariate normal distribution does not allow for tail dependence. Put
another way, in this case we have that λL = λU = 0. This implies that the components of a normally
distributed random vector cannot be extremal dependent either. In the risk-management literature, the
class of elliptical distributions (Cambanis et al., 1981; Fang et al., 1990; Kelker, 1970) is often proposed
as an appropriate alternative to the normal distribution (see, e.g., Bingham and Kiesel, 2002; Eberlein
and Keller, 1995; Frahm, 2004; McNeil et al., 2005). Here, I will adopt this approach. Elliptical
distributions cover the first three observations made in Figure 2, which are discussed in Section 1, and
they are tractable even if the number of dimensions is high. The fourth phenomenon, namely that
the distribution of extreme asset returns is asymmetric, cannot be explained by elliptical distributions.
For this purpose, we could make use of generalized elliptical distributions (Frahm and Jaekel, 2015;
Frahm, 2004), but this goes beyond the scope of this work.

A d-dimensional random vector X is said to be elliptically distributed if and only if there exist a
vector µ ∈ Rd, a matrix Λ ∈ Rd×k, a nonnegative random variable R, and a k-dimensional random
vector S that is stochastically independent of R and uniformly distributed on the unit hypersphere{
s ∈ Rk : ‖s‖2 = 1

}
such that X = µ + ΛRS (Cambanis et al., 1981). The parameter µ is called the

location vector, Σ := ΛΛ′ is referred to as the dispersion matrix, and R is said to be the generating
variate of X. If Λ1Λ

′
1 = Λ2Λ

′
2 for any Λ1,Λ2 ∈ R

d×k, then the random vectors Λ1S and Λ2S have
the same distribution. That is, the distribution of X depends on Λ only through Σ and, without loss of
generality, I assume that rk Σ = d = k. The second moments of X are finite if and only if E(R2) < ∞, in
which case we have that Var(X) = E(R2) Σ/d. However, the dispersion matrix Σ exists (and is finite)
even if E(R2) = ∞. The distribution of X is symmetric around µ and so the lower EDC coincides with
the upper EDC of X.

In general, the components of an elliptically distributed random vector X exhibit two sorts of
dependencies, viz.

(1) linear dependence, which can be expressed by the dispersion matrix Σ and
(2) nonlinear dependence, which is determined by the generating variate R.

For example, the (spherically distributed) random vector X = S contains no linear dependence at
all. Nonetheless, in a nonlinear manner, the components of X highly depend on each other because the
generating variate R = 1 forces them to be such that ‖X‖2 = 1. It is well-known that the components
of X are mutually independent if and only if X possesses a normal distribution, i.e., R2 = χ2

d, and the
off-diagonal elements of Σ are zero, i.e., the components of X are uncorrelated.

In risk management it is typically assumed that the survival function of R is regularly varying
(Mikosch, 2003). This means that

P(R > r) = f (r) r−α, α ≥ 0,

for all r > 0, where f is a slowly varying function, i.e., f (tr)/ f (r) → 1 as r → ∞ for all t > 0.† Put
†This implies that there exists some threshold τ > 0 such that f (r) > 0 for all r ≥ τ.
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another way, r 7→ P(R > r) tends to a power law. This is equivalent to

P(R > tr)
P(R > r)

−→ t−α, r −→ ∞,

for all t > 0. In this case, the distribution of R is said to be heavy tailed and α represents its tail index.
The lower α the heavier the tail of the distribution of R. To keep the terminology simple, I will say that
R itself is heavy tailed or, equivalently, regularly varying (with tail index α).

Further, a d-dimensional random vector X is said to be regularly varying with tail index α ≥ 0 if
and only if there exists a d-dimensional random vector S that is distributed on the unit hypersphere
Sd−1 =

{
s ∈ Rd : ‖s‖ = 1

}
such that

P
(
‖X‖ > tr, X/‖X‖ ∈ B

)
P
(
‖X‖ > r

) −→ t−α P
(
S ∈ B

)
, r −→ ∞ ,

for all t > 0 and every Borel set B ⊆ Sd−1 with P(S ∈ ∂B) = 0 (Mikosch, 2003).‡ Here, we can choose
any arbitrary norm ‖ · ‖, but the unit hypersphere Sd−1 depends on the choice of ‖ · ‖. However, the norm
does not affect the tail index α (Hult and Lindskog, 2002).

Regular variation properties of elliptical distributions are investigated by Frahm (2006), Hult and
Lindskog (2002) as well as Schmidt (2002). The latter authors focus on the relationship between
regular variation and the TDC. By contrast, Frahm (2006) studies the EDC of regularly varying
elliptically distributed random vectors. Suppose that X is elliptically distributed with location vector
µ = 0 and let ‖ · ‖Σ be the Mahalanobis norm, i.e., ‖x‖2

Σ
= x′Σ−1x for all x ∈ Rd. Then we have that

‖X‖Σ = R and X/‖X‖Σ = ΛS , which leads to

P
(
‖X‖Σ > tr, X/‖X‖Σ ∈ B

)
P
(
‖X‖Σ > r

) =
P(R > tr)
P(R > r)

· P
(
ΛS ∈ B

)
−→ t−α P

(
ΛS ∈ B

)
,

where S ∈
{
s ∈ Rd : ‖s‖2 = 1

}
and thus ΛS ∈

{
s ∈ Rd : ‖s‖Σ = 1

}
. That is, if the generating variate R

is regularly varying, the random vector X inherits the tail index of R. Moreover, the regular variation
property is not affected by translations of X, i.e., the previous result holds true if µ , 0 (Hult and
Lindskog, 2002).

Now, suppose that R is regularly varying with tail index α and define

Σ =:


σ2

1 σ12 · · · σ1d

σ21 σ2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ2
d

 , σ :=


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σd

 , ρ :=


1 ρ12 · · · ρ1d

ρ21 1 · · · ρ2d
...

...
. . .

...

ρd1 ρd2 · · · 1

 ,
where ρi j := σi j/(σiσ j) for i, j = 1, 2, . . . , d with σii ≡ σ

2
i for i = 1, 2, . . . , d. Thus, ρ represents the

correlation matrix of X and we have that Σ = σρσ. Since E(Rγ) < ∞ for all γ < α but E(Rγ) = ∞ for
all γ > α (Embrechts et al., 1997), the second moment of R is infinite if its tail index is lower than 2.
Then the covariance matrix of X remains undefined. However, ρ still exists and can be considered a
“pseudo-correlation matrix” (Frahm, 2006).

‡Here, “∂B” denotes the boundary of B.
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The parameters µ and σ affect only the marginal distribution functions of X but not its copula.
For this reason, we may concentrate on the correlation matrix ρ and the distribution of R in order to
calculate the EDC of X. The dispersion matrix Σ is positive definite and so the same holds true for ρ.
We can choose any matrix

√
ρ ∈ Rd×d with rk

√
ρ = d such that ρ =

√
ρ
√
ρ ′ and thus Λ = σ

√
ρ . Now,

define the random variables Y := min
√
ρ S and Z := max

√
ρ S .

The following theorem represents the main theoretical result of this work.

Theorem 1. Let X be a d-dimensional regularly varying elliptically distributed random vector with
positive definite correlation matrix ρ and tail index α ≥ 0. Then both the lower and the upper EDC of
X correspond to

ε =

∫ ∞
0

yα dFY(y)∫ ∞
0

zα dFZ(z)
,

where FY and FZ denote the distribution functions of Y = min
√
ρ S and Z = max

√
ρ S , respectively.

Proof. The copula of X = µ + σ
√
ρRS neither depends on µ nor on σ. Hence, we may focus on the

standardized random vector ξ :=
√
ρRS . The distribution of ξ is symmetric and so the lower EDC

coincides with the upper EDC of ξ. Moreover, the marginal distribution functions of ξ are identical
and so the EDC can be calculated by

ε = lim
r→∞

P
(
ξ > r1

)
1 − P

(
ξ ≤ r1

) = lim
r→∞

P
(
RY > r

)
P
(
RZ > r

) .
By applying the Law of Total Probability we obtain

ε = lim
r→∞

∫ ∞
0
P
(
R > r/y

)
dFY(y)∫ ∞

0
P
(
R > r/z

)
dFZ(z)

= lim
r→∞

∫ ∞
0
P
(
R > y−1r

)
/P

(
R > r

)
dFY(y)∫ ∞

0
P
(
R > z−1r

)
/P

(
R > r

)
dFZ(z)

.

Since R is regularly varying with tail index α, we have that

P
(
R > y−1r

)
P
(
R > r

) −→ yα and
P
(
R > z−1r

)
P
(
R > r

) −→ zα, r −→ ∞ .

The convergence is uniform in (0, a] for all a > 0 (Embrechts et al., 1997). Further, the distribution of
Z and thus also of Y ≤ Z has a finite right endpoint. Hence, we can choose a sufficiently large number
a and apply the Dominated Convergence Theorem, which implies that

lim
r→∞

∫ ∞

0

P
(
R > y−1r

)
P
(
R > r

) dFY(y) =

∫ ∞

0
yα dFY(y) < ∞

as well as

lim
r→∞

∫ ∞

0

P
(
R > z−1r

)
P
(
R > r

) dFZ(z) =

∫ ∞

0
zα dFZ(z) < ∞ .

This leads us to the desired result. �

The result of Theorem 1 can be expressed, equivalently, by

ε =
E
(
(min

√
ρ S ∨ 0)α

)
E
(
(max

√
ρ S ∨ 0)α

) , (1)
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where a ∨ b denotes the maximum of a, b ∈ R. This expression clearly reveals that the EDC of a
regularly varying elliptically distributed random vector depends only on ρ and α. In particular, the
given formula is comfortable if we want to approximate ε by numerical simulation.

Table 1 contains the EDC of a 2-dimensional regularly varying elliptically distributed random vector
for different values of ρ12 = ρ21 and α. The EDC equals 1 if ρ12 = 1 or α = 0, whereas it equals 0 if
ρ12 = −1 (but not α = 0) or α = ∞ (but not ρ12 = 1), where “ρ12 = −1,” “ρ12 = 1,” and “α = ∞” shall
be interpreted as the limiting cases ρ12 ↘ −1, ρ12 ↗ 1, and α→ ∞.

Table 1. EDC for different values of ρ12 and α in the case of d = 2.

α

ρ12 0 1 2 3 4 5 10 ∞

-1 1 0 0 0 0 0 0 0
-0.75 1 0.0334 0.0099 0.0031 0.0010 0.0003 0 0
-0.5 1 0.0718 0.0297 0.0130 0.0059 0.0027 0.0001 0

-0.25 1 0.1170 0.0590 0.0316 0.0175 0.0099 0.0006 0
0 1 0.1716 0.0999 0.0616 0.0393 0.0255 0.0034 0

0.25 1 0.2404 0.1576 0.1088 0.0775 0.0563 0.0132 0
0.5 1 0.3333 0.2430 0.1852 0.1449 0.1155 0.0427 0
0.75 1 0.4776 0.3883 0.3261 0.2793 0.2424 0.1338 0

1 1 1 1 1 1 1 1 1

3. Empirical investigation

The EDC is an asymptotic risk measure. Usually, such kind of risk measures are not easy to estimate
if the sample size is small or if the estimator is nonparametric (Frahm et al., 2005). The trick is to use
a semiparametric approach, i.e., to combine parametric and nonparametric elements. Here, we adopt
this approach by restricting ourselves to elliptical distributions. Hence, we allow for a large number of
well-known multivariate distributions, e.g., the normal, the sub-Gaussian α-stable distribution (Rachev
and Mittnik, 2000) as well as the symmetric generalized hyperbolic distributions (Barndorff-Nielsen
et al., 1982). Regular variation excludes the normal distribution and any other elliptical distribution
with exponentially decaying tails. However, in the light of Figure 1 and Figure 2, this restriction is not
binding at all in our context.

A quite popular parametric alternative to the multivariate normal distribution is the multivariate
t-distribution, which is characterized by the density

f (x) =
Γ
(

d+ν
2

)
Γ
(
ν
2

) · √det
(
Σ−1)

(νπ)d ·

(
1 +

(x − µ)′ Σ−1 (x − µ)
ν

)− d+ν
2

,

where ν > 0 is the number of degrees of freedom and the dispersion matrix Σ is assumed to be positive
definite. If the number ν tends to infinity, the multivariate t-distribution approaches the multivariate
normal distribution. Further, for ν = 1 we obtain the Cauchy distribution. The class of symmetric
generalized hyperbolic distributions contains the multivariate t- and thus the Cauchy distribution as
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special cases. The expectation of a t-distributed random vector X corresponds to µ if ν > 1, but in the
case of 0 < ν ≤ 1 it does not exist. Further, in the case of ν > 2, the covariance matrix of X equals ν

ν−2 Σ.
It is well-known that the multivariate t-distribution represents a regularly varying distribution with tail
index ν. Hence, in order to estimate the location vector, the correlation matrix, and the tail index of
log-returns in a parametric way, we can fit a multivariate t-distribution by maximum likelihood (ML).

The EDC can be estimated by using the plug-in approach. For this purpose, we have to choose some
appropriate estimators for ρ and α in order to substitute the true parameters with the corresponding
estimates. According to Theorem 1, the EDC is a function of ρ and α and with equation 1 it is quite
simple to compute the estimate of ε given the estimates of ρ and α.

Let X· j = µ + ΛR jS j be the (7-dimensional) vector of log-returns at Day j = 1, 2, . . . , n. Hence, µ
and Σ are constant over time and I assume that the generating variates R1,R2, . . . ,Rn are identically
distributed. The components of the d-dimensional stochastic process {X·n} need not be serially
independent. It suffices to assume that {X·n} is (strictly) stationary and ergodic.

3.1. Estimating the correlation matrix

In order to estimate ρ, we may start with Tyler’s M-estimator for Σ (Tyler, 1987a, b), viz.

Σ̂ =
d
n

n∑
j=1

(X j − µ̂)(X j − µ̂)′

(X j − µ̂)′Σ̂−1(X j − µ̂)
, (2)

where µ̂ is the estimator for µ that is associated with Σ̂ in a natural way (Hettmansperger and Randles,
2002; Tyler, 1987a). This estimator proves to be favorable whenever the data exhibit heavy tails
(Frahm, 2004; Frahm and Jeakel, 2010, 2015). Tyler’s M-estimator is the most robust estimator for Σ

if the distribution of X is elliptical (Tyler, 1987a). If the location vector µ is known, the distribution of
Σ̂ is not affected at all by the generating variate R. For more details on that topic see the
aforementioned references as well as Adrover (1998), Dümbgen and Tyler (2005), Kent and Tyler
(1988, 1991), Maronna and Yohai (1990), and Tyler (1983, 1987b).

The estimate of ρ based on Tyler’s M-estimator for Σ is contained in Table 2. The given results
confirm a well-known phenomenon of empirical finance: Returns on stocks and stock indices are, in
general, highly correlated with each other in our global economy. Thus, it is interesting to observe that
the correlation between Japan and each other G–7 country is relatively low. In fact, Japan is almost
uncorrelated with USA. By contrast, the correlation between France and Germany is almost perfect.

Table 2. Estimate of ρ based on Tyler’s M-estimator for scatter.

Canada France Germany Italy Japan UK USA

Canada 1 0.5659 0.5480 0.5159 0.1644 0.5745 0.6155
France 0.5659 1 0.9205 0.8729 0.1871 0.8317 0.5014
Germany 0.5480 0.9205 1 0.8276 0.1833 0.7921 0.5152
Italy 0.5159 0.8729 0.8276 1 0.1417 0.7475 0.4492
Japan 0.1644 0.1871 0.1833 0.1417 1 0.2011 0.0288
UK 0.5745 0.8317 0.7921 0.7475 0.2011 1 0.4707
USA 0.6155 0.5014 0.5152 0.4492 0.0288 0.4707 1
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Alternatively, ρ can be estimated in a parametric way by fitting the multivariate t-distribution to the
data. This is done by using the algorithm proposed by Aeschliman et al. (2010), which proves to be
very fast and reliable. The result is given in Table 3. We can see that the estimates of ρ are quite similar
to those given by Table 2.

Table 3. Estimate of ρ based on the multivariate t-distribution.

Canada France Germany Italy Japan UK USA

Canada 1 0.5465 0.5374 0.4994 0.1562 0.5546 0.6362
France 0.5465 1 0.8922 0.8647 0.1815 0.8234 0.4760
Germany 0.5374 0.8922 1 0.8043 0.1673 0.7652 0.5114
Italy 0.4994 0.8647 0.8043 1 0.1389 0.7369 0.4291
Japan 0.1562 0.1815 0.1673 0.1389 1 0.1928 0.0205
UK 0.5546 0.8234 0.7652 0.7369 0.1928 1 0.4532
USA 0.6362 0.4760 0.5114 0.4291 0.0205 0.4532 1

3.2. Estimating the tail index

Extreme value theory provides many possibilities in order to estimate the tail index of a regularly
varying random variable (Embrechts et al., 1997). However, the aforementioned authors clearly
advocate the peaks-over-threshold (POT) method (Embrechts et al., 1997). First of all, we have to
estimate the realizations of R, which represents a latent variable. The dispersion matrix Σ can be
identified only up to some scaling constant κ2 > 0 because X = µ + ΛRS = µ + (κΛ)(R/κ)S for all
κ > 0. Tyler’s M-estimator suffers from the same identification problem, since Equation 2 remains
valid if we substitute the estimate Σ̂ with κ2Σ̂ for any κ > 0.

However, we are not affected by the identification problem. Note that

(X − µ)′(κ2Σ)−1(X − µ) = (R/κ)2,

but the tail index of R/κ does not depend on κ at all. For this reason, we can choose any positive
constant κ or, equivalently, any appropriate shape matrix Σ (Frahm, 2009; Paindaveine, 2008). Suppose
that E(R2) < ∞. We will see later on that this assumption is not too farfetched. In this case, we can
assume without loss of generality that Σ is such that E(R2) = d, which guarantees that Var(X) = Σ.
Now, the realization r j of the generating variate at Day j = 1, 2, . . . , n, i.e., R j, can be estimated by

r̂ j =

√
(x j − µ̂)′Σ̂−1(x j − µ̂) , (3)

where x j is the realization of X j and Σ̂ is such that 1
n

∑n
j=1 r̂2

j = 7. Figure 6 contains the kernel density
of r̂2

1, r̂
2
2, . . . , r̂

2
n and the χ2

d-density with d = 7 degrees of freedom. Once again, we can see that the
normal-distribution hypothesis (R2 = χ2

d) is clearly violated for real data.
The mean-excess plot (Embrechts et al., 1997) based on r̂1, r̂2, . . . , r̂n is given by Figure 7, which

clearly reveals that R has a power tail with positive tail index. We may choose τ = 4 as a critical
threshold and calculate the excess ŵ j := r̂ j − 4 for all r̂ j > 4 (Embrechts et al., 1997). The POT-
estimator for the tail index α represents an ML-estimator that is based on the assumption that the
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Figure 6. Kernel density of r̂2
1
, r̂2

2
, . . . , r̂2

n (blue) vs. the χ2
d
-density with d = 7 (green).

excesses follow a generalized Pareto distribution. More precisely, the density of the excess w ≥ 0 is
assumed to be

f (w) =
1
β

(
1 +

w
αβ

)−α−1

,

where α > 0 is the tail index and β > 0 represents a scale parameter.

Figure 7. Empirical mean-excess function of r̂1, r̂2, . . . , r̂n.

After applying the ML-estimator to ŵ1, ŵ2, . . . , ŵn we obtain the result α̂ = 4.1705. The
corresponding standard error is 1.1004 under the simplifying assumption that the observations are
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serially independent. Hence, the estimation risk is very large, which is a typical phenomenon when
applying extreme value theory to financial data. The one-sided 95%-confidence interval for α is
[2.3605,∞), whereas the two-sided 95%-confidence interval corresponds to [2.0137, 6.3273]. Thus,
we may at least expect that α > 2, i.e., that the second moment of R is finite, but not much more.

Alternatively, we can use the parametric estimator for ν based on the assumption that the data are
multivariate t-distributed. Recall that ν is the tail index of the multivariate t-distribution. This leads to
ν̂ = 2.9013 with standard error 0.0577. The standard error of ν̂ is essentially lower than that of α̂, but
we should keep in mind that the assumption that daily log-returns are multivariate t-distributed can be
wrong. To check this, we can calculate the realizations of R, i.e., r̂1, r̂2, . . . , r̂n, by using Eq. 3. Now, µ̂
and Σ̂ correspond to the ML-estimates based on the multivariate t-distribution. In this case, we do not
have any identification problem concerning the dispersion matrix Σ and so we need not normalize the
realizations of R.

If the log-returns follow a multivariate t-distribution, then R2 equals dFd,ν, where Fd,ν is an
F-distributed random variable with d numerator degrees of freedom and ν denominator degrees of
freedom (Frahm, 2004). Hence, in order to get an impression of the goodness of fit, the reader can
compare the kernel density of r̂2

1, r̂
2
2, . . . , r̂

2
n with the density of dFd,ν in Figure 8. As we can see, the fit

is good in the tail, but it is still unsatisfactory in the center. However, from the viewpoint of a risk
manager, the multivariate t-distribution is clearly preferable to the normal distribution (see Figure 6),
which seriously underestimates the heaviness of the tail. Nonetheless, when comparing α̂ with ν̂ we
must be aware of the typical bias-variance trade-off between parametric and nonparametric methods.

Figure 8. Kernel density of r̂2
1
, r̂2

2
, . . . , r̂2

n (blue) vs. the density of dFd,ν with d = 7 and
ν = 2.9013 (green).

3.3. Ruin probabilities

In the following, let

• π := P
(

min U ≤ p
)

be the probability that at least one country has a p-shortfall and
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• ψ := P
(

max U ≤ p
)

be the probability that all countries have a p-shortfall.

The latter is referred to as a one-day ruin probability.
If p is sufficiently small, we have that

ψ =
P
(

max U ≤ p
)

P
(

min U ≤ p
) · P( min U ≤ p

)
≈ επ .

This simple approximation can be used in order to estimate the ruin probability ψ by ε̂π̂, where ε̂ is
the plug-in estimator for ε and π̂ is the empirical estimator for π. The basic idea is to use an empirical
estimator whenever the number of observations is large enough, but to apply a semiparametric approach
if the number of observations is small or even zero. Estimating π is easy because the number of trading
days on which at least one country had a shortfall is relatively large. Even for the smallest shortfall
probability p = 0.005 we can observe 77 out of 4804 days that satisfy this condition. By contrast, the
number of trading days on which all countries had a shortfall is very small. There was only one day on
which all G–7 countries had a 0.005-shortfall, i.e., November 6, 2008. In many practical applications
this number can even be zero. Of course, this makes nonparametric estimation of ψ impossible. For
this reason, we apply a semiparametric approach in order to estimate ε.

Table 4 contains the empirical 20-day, 100-day, and 200-day quantiles for the G–7 countries and the
(estimated) probabilities that at least one country suffers from an associated shortfall. Canada, Japan,
and UK seem to have quite similar quantiles and the same holds true for France, Germany, and Italy.
The given numbers are just estimates and so it is clear that they suffer from estimation risk. I cannot see
any economic argument that explains why these countries should have similar theoretical quantiles.

Table 4. Empirical 20-, 100-, and 200-day quantiles for the G–7 countries.

p Canada France Germany Italy Japan UK USA π

0.05 -0.0217 -0.0245 -0.0255 -0.0257 -0.0222 -0.0210 -0.0187 0.1559
0.01 -0.0394 -0.0456 -0.0468 -0.0507 -0.0379 -0.0369 -0.0346 0.0339

0.005 -0.0496 -0.0544 -0.0586 -0.0603 -0.0465 -0.0462 -0.0435 0.0160

During m trading days we can expect

E

 m∑
j=1

1max U· j≤p

 =

m∑
j=1

P
(

max U· j ≤ p
)

= mψ

ruins, where U· j = (U1 j,U2 j, . . . ,Ud j) with Ui j := Fi(Xi j) for i = 1, 2, . . . , d and j = 1, 2, . . . , n. This
formula holds irrespective of whether the shortfalls are serially dependent or independent. That is,
on average, a ruin occurs after ψ−1 trading days, i.e., ψ−1/250 years, and so this is referred as to the
expected ruin time.

Let ψm be the m-day ruin probability, i.e., the probability of a financial collapse during m trading
days. If we make the simplifying assumption that the ruins are serially independent, we obtain

ψm = 1 − (1 − ψ)m ≈ 1 − (1 − επ)m (4)

for all m ∈
{
1, 2, . . .

}
. However, as already mentioned in Section 1, in real life we can observe shortfall

clusters and so the serial-independence assumption is violated. We can expect that the probability of

Quantitative Finance and Economics Volume 2, Issue 3, 590–614.



606

subsequent drawdowns increases in turbulent times and decreases when the financial market is calm.
In the finance literature, this phenomenon is often described by so-called Hawkes processes, i.e., self-
exciting point processes (Laub et al., 2015). Nonetheless, for the sake of simplicity, here I assume that
concomitant shortfalls are serially independent.

Risk managers generally distinguish between the short-term and the long-term approach. The short-
term approach is dynamic and refers to the conditional distribution of asset returns, whereas the long-
term approach is static and refers to their unconditional distribution. Whenever we apply empirical
methods of risk management, we should make clear from the outset whether our approach is dynamic
or static. The approach advocated in this work is clearly static because it takes the unconditional, i.e.,
stationary, distribution of asset returns into account. This means that it is not appropriate if we want
to quantify the systemic risk during the forthcoming five years.§ In order to accomplish the ambitious
task of a dynamic forecast, we would have to take the current state of the economy into consideration
and use suitable parametric models, i.e., models that reflect the dynamic properties of daily log-returns
in a reasonable way. This goes far beyond the present work. Nonetheless, I am convinced that the
methods proposed here can readily be used also in a conditional rather than unconditional framework.

The POT-estimate for the tail index α is roughly 4. It is worth emphasizing that this result does
not change substantially if we use another estimator for the tail index, e.g., the Hill estimator or the
Pickands estimator (Embrechts et al., 1997). For this reason, we can conduct a scenario analysis with
α = 4 representing the normal case. By contrast, due to the confidence interval for α reported in
Section 3.2, the tail index α = 2 represents the worst case, whereas α = 6 is the best case. Table 5
contains the results of our analysis. Here, I recapitulate the given parameters:

• p is the shortfall probability,
• ε is the EDC,
• π is the probability that at least one country has a p-shortfall,
• ψ is the probability that all countries have a p-shortfall,
• ψ−1/250 is the expected ruin time (in years),
• ψ250 is the 1-year ruin probability,
• ψ5·250 is the 5-year ruin probability, and
• ψ10·250 is the 10-year ruin probability.

Table 6 contains the parameter estimates based on the multivariate t-distribution. If the daily log-
returns were multivariate t-distributed, we should trust these results more than those in Table 5, but as
we have already seen, the multivariate t-distribution is not beyond all doubt.

Figure 9 illustrates how ruin probabilities, based on the shortfall probability p = 0.01, depend on
the tail index α. We can see that the ruin probabilities are quite sensitive to the tail index. Obtaining
a valid semiparametric estimate of α is a challenge because we have to cope with the general bias-
variance trade-off that is well-known in extreme value theory. However, for a shortfall probability of
p = 0.05, the given results clearly indicate that in the normal case (a = 4) we will observe a collapse of
the entire financial market each 5 years. In the best case (α = 6) the expected ruin time is much longer
and in the worst case (α = 2) it is much shorter. It is very unlikely that the tail index is below 2 because
then the number of collapses would have been much larger during the last decades. Hence, the tails of
sub-Gaussian α-stable distributions appear to be too heavy, which confirms a similar result concerning

§By the way, the same issue arises whenever we try to estimate the value at risk.
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Table 5. Analytical results based on the POT-estimator.

α̂ = 4.1705 (POT-estimate), standard error: 1.1004
p ε π ψ ψ−1/250 ψ250 ψ5·250 ψ10·250

0.05 0.0041 0.1559 0.0006 6.1852 0.1493 0.5545 0.8016
0.01 0.0041 0.0339 0.0001 28.4698 0.0345 0.1611 0.2962

0.005 0.0041 0.0160 0.0001 59.8322 0.0166 0.0802 0.1539

α = 2 (worst case)
p ε π ψ ψ−1/250 ψ250 ψ5·250 ψ10·250

0.05 0.0192 0.1559 0.0030 1.3345 0.5274 0.9764 0.9994
0.01 0.0192 0.0339 0.0007 6.1322 0.1502 0.5569 0.8036

0.005 0.0192 0.0160 0.0003 12.9811 0.0739 0.3189 0.5361

α = 4 (normal case)
p ε π ψ ψ−1/250 ψ250 ψ5·250 ψ10·250

0.05 0.0046 0.1559 0.0007 5.5232 0.1642 0.5921 0.8336
0.01 0.0046 0.0339 0.0002 25.3796 0.0382 0.1771 0.3229

0.005 0.0046 0.0160 0.0001 53.7256 0.0182 0.0879 0.1681

α = 6 (best case)
p ε π ψ ψ−1/250 ψ250 ψ5·250 ψ10·250

0.05 0.0014 0.1559 0.0002 18.7455 0.0531 0.2388 0.4206
0.01 0.0014 0.0339 < 0.0001 86.1372 0.0118 0.0576 0.1119

0.005 0.0014 0.0160 < 0.0001 182.3423 0.0056 0.0276 0.0545

the TDC reported by Frahm et al. (2003). That is, we can expect that the log-returns have a (finite)
covariance matrix. The probability of a ruin during some relatively short period of time, e.g., 5 or 10
years, turns out to be high from a risk-manager’s perspective and we cannot exclude the possibility that
the tail index, α, increases during the coming decades. However, in this work, I assume that {X·n} is
stationary and thus α is constant. Testing for structural breaks concerning the tail index would require
us to analyze much longer time series. This could be the subject of future research.

Table 6. Analytical results based on the multivariate t-distribution.

ν̂ = 2.9013 (ML-estimate), standard error: 0.0577
p ε π ψ ψ−1/250 ψ250 ψ5·250 ψ10·250

0.05 0.0098 0.1559 0.0015 2.6098 0.3185 0.8530 0.9784
0.01 0.0098 0.0339 0.0003 12.0678 0.0795 0.3393 0.5634

0.005 0.0098 0.0160 0.0002 25.4897 0.0385 0.1781 0.3245
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Figure 9. Ruin probabilities based on p = 0.01 for 1, 5, and 10 years.

4. Conclusions

Daily asset returns are heavy tailed and extremal dependent, which can be described by the
assumption that they are regularly varying and elliptically distributed. Copula theory proves suitable
for analyzing extremal dependence in a general framework, whereas extreme value theory provides
the necessary tools in order to quantify the dependence structure of extreme asset returns that stem
from a regularly varying elliptical distribution. The EDC is a natural measure of systemic risk and the
EDC of regularly varying elliptically distributed asset returns depends only on their correlation matrix
and the tail index. Extreme value theory allows us to estimate the EDC in a semiparametric way. This
point is essential because, by their very definition, extreme values do not appear often in real life and
so it is virtually impossible to apply a purely nonparametric estimator in order to estimate the EDC.

The presented theory has been applied in order to analyze the risk that the financial market collapses.
The indicated ruin probabilities are high, but we must notice that the results are quite sensitive to the
tail index. In order to take different tail indices into account, we conducted a scenario analysis. In the
worst case, the probability that the financial market collapses during 10 years exceeds 50%. Hence, at
least from a risk-manager’s perspective, we should remain cautious and must not neglect the risk that
international diversification dramatically fails from time to time. Nonetheless, at least we can reject the
hypothesis that daily asset returns have no finite second moments, which precludes the sub-Gaussian
α-stable distribution. This confirms a similar result obtained by Frahm et al. (2003) regarding the TDC.
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Appendix

QQ–Plots
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Figure 10. Normal Q–Q plots of daily log-returns from 1999-01-04 to 2018-03-02 on the
MSCI country indices except for Canada (see Figure 1).
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Scatter Plots
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Figure 11 (continued)
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Figure 11. Scatter plots of daily log-returns from 1999-01-04 to 2018-03-02 on the MSCI
country indices for all G–7 countries (blue points). The red contours represent the deciles of
the bivariate normal distribution that is fitted to the data.
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