Citation: Benoît Perthame, Edouard Ribes, Delphine Salort. Career plans and wage structures: a mean field game approach[J]. Mathematics in Engineering, 2019, 1(1): 38-54. doi: 10.3934/Mine.2018.1.38
[1] | Lasry JM and Lions PL (2006) Jeux à champ moyen. I. Le cas stationnaire. CR Math 343: 619–625. |
[2] | Lasry JM and Lions PL (2006) Jeux à champ moyen. II. Horizon fini et contrôle optimal. CR Math 343: 679–684. |
[3] | Lasry JM and Lions PL (2007) Mean field games. Jpn J Math 2: 229–260. doi: 10.1007/s11537-007-0657-8 |
[4] | Besoussan A, Frehse J and Yam P (2013) Mean Field Games and Mean Field Type Control Theory, Springer. |
[5] | Gomes D and Sade J (2014) Mean field games models a brief survey. Dyn Games Appl 4: 110–154. doi: 10.1007/s13235-013-0099-2 |
[6] | Gueant O, Lasry JM and Lions PL (2011) Mean Field Games and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, 205–266. |
[7] | Kräkel M and Schöttner A (2012) Internal labor markets and worker rents. Journal of Economic Behavior and Organization 84: 491–509. doi: 10.1016/j.jebo.2012.08.008 |
[8] | Dohmen T (2014) Behavioral labor economics: Advances and future directions. Labour Economics 30: 71–85. doi: 10.1016/j.labeco.2014.06.008 |
[9] | Carmona R, Delarue F and Lacker D (2017) Mean field games of timing and models for bank runs. Appl Math Opt 76: 217–260. doi: 10.1007/s00245-017-9435-z |
[10] | Achdou Y, Buera FJ, Larsy JM, et al. (2014) Partial differential equation models in macroeconomics. Philos T R Soc A 372: 20130397–20130397. doi: 10.1098/rsta.2013.0397 |
[11] | Achdou Y, Giraud PN, Larsy JM, et al. (2016) A long term mathematical model for mining industries. Appl Math Opt 74: 579–618. doi: 10.1007/s00245-016-9390-0 |
[12] | Porretta A (2013) On the planning problem for a class of mean field games. CR Math 351: 457– 462. |
[13] | Porretta A (2014) On the planning problem for the mean field games system. Dyn Games Appl 4: 231–256. doi: 10.1007/s13235-013-0080-0 |
[14] | Lions PL (2013) Cours au collège de france. Technical report, Collège de France. |
[15] | Doumic M, Perthame B, Ribes E, et al. (2017) Toward an integrated workforce planning framework using structured equations. Eur J Oper Res 262: 217–230. doi: 10.1016/j.ejor.2017.03.076 |
[16] | Perthame B, Ribes E, Salort D, et al. (2017) A model for cost effcient workforce organizational dynamics and its optimization. ArXiv preprint ArXiv:1707.05056. |
[17] | Achdou Y, Camilli F and Capuzzo-Dolcetta I (2013) Mean field games: convergence of a finite difference method. SIAM J Numer Anal 51: 2585–2612. doi: 10.1137/120882421 |
[18] | Achdou Y and Porretta A (2016) Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games. SIAM J Numer Anal 54: 161–186. doi: 10.1137/15M1015455 |
[19] | Wiatrowski WJ (2013) Employment-based health benefits in small and large private establishments. |
[20] | Abowd JM and Kramarz F (2000) Inter-industry and firm-size wage differentials: New evidence from linked employer-employee data. Technical report, Cornell University. |
[21] | Rogerson R, Shimer R and Wright R (2005) Search-theoretic models of the labor market: A survey. Journal of economic literature 43: 959–988. doi: 10.1257/002205105775362014 |
[22] | Bardi M and Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton- Jacobi-Bellman equations. Birkhäuser Boston. |
[23] | Fleming WH and Soner HM (1993) Controlled Markov Processes and Viscosity Solutions. Vol 25, Springer |