Citation: Alveena Batool Syed, James Robert Brašić. Nuclear neurotransmitter molecular imaging of autism spectrum disorder[J]. AIMS Molecular Science, 2019, 6(4): 87-106. doi: 10.3934/molsci.2019.4.87
[1] | Division of Birth Defects, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Data & statistics on autism spectrum disorder, 2019. Available from: https://www.cdc.gov/ncbddd/autism/data.html. |
[2] | Baio J, Wiggins L, Christensen D, et al. (2018) Prevalence of autism spectrum disorder among children aged 8 years-Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2014. MMWR Surveill Summ: 67: 1–23. |
[3] | Brasic J, Farhadi F, Asperger Syndrome, Medscape Drugs & Diseases, 2018. Available from: http://emedicine.medscape.com/article/912296-overview. |
[4] | Brasic J, Farhadi F, Autism Spectrum Disorder, Medscape Drugs & Diseases, 2018. Available from: http://emedicine.medscape.com/article/912781-overview. |
[5] | Office of Communication, Eunice Kennedy Shriver National Institute of Child Health and Human development, Autism spectrum disorder (ASD), 2019. Available from: https://www.nichd.nih.gov/health/topics/autism. |
[6] | Mayo Clinic, Autism spectrum disorder, 2019. Available from: https://www.mayoclinic.org/diseases-conditions/autism-spectrum-disorder/symptoms-causes/syc-20352928. |
[7] | Healthline, Everything you need to know about autism, 2018. Available from: https://www.healthline.com/health/autism#the-autism-spectrum. |
[8] | Brasic J, Barnett J, Kaplan D, et al. (1994) Clomipramine ameliorates adventitious movements and compulsions in prepubertal boys with autistic disorder and severe mental retardation. Neurology 44: 1309–1312. doi: 10.1212/WNL.44.7.1309 |
[9] | Brasić J (1999) Movements in autistic disorder. Med Hypotheses 53: 48–49. doi: 10.1054/mehy.1997.0711 |
[10] | Brasic J, Gianutsos J (2000) Neuromotor assessment and autistic disorder. Autism 4: 287–298. doi: 10.1177/1362361300004003005 |
[11] | Brašić J (2003) Treatment of movement disorders in autism spectrum disorders, In: Hollander E (Editor), Autism Spectrum Disorders, The Medical Psychiatry Series, Marcel Dekker, Inc., New York 24: 273–346. |
[12] | Brasić J, Barnett J, Aisemberg P, et al. (1997) Dyskinesias subside off all medication in a boy with autistic disorder and severe mental retardation. Psychol Rep 81: 755–767. doi: 10.2466/pr0.1997.81.3.755 |
[13] | Brasić J, Barnett J (1997) Hyperkinesias in a prepubertal boy with autistic disorder treated with haloperidol and valproic acid. Psychol Rep 80: 163–170. doi: 10.2466/pr0.1997.80.1.163 |
[14] | Brasić J, Zagzag D, Kowalik S, et al. (1999) Progressive catatonia. Psychol Rep 84: 239–246. doi: 10.2466/pr0.1999.84.1.239 |
[15] | Brašić J, Barnett J, Will M, et al. (2000) Dyskinesias differentiate autistic disorder from catatonia. CNS Spectr 5: 19–22. |
[16] | Brašić J, Zagzag D, Kowalik S (2000) Clinical manifestations of progressive catatonia. Ger J Psychiatry 3: 13–24. |
[17] | Brasic J, A 20-year-old man who stopped speaking, Medscape, 2017. Available from: http://reference.medscape.com/viewarticle/883207_6. |
[18] | Hwang B, Mohamed M, Brašić J (2017) Molecular imaging of autism spectrum disorder. Int Rev Psychiatry 29: 530–554. doi: 10.1080/09540261.2017.1397606 |
[19] | American Psychiatric Association, (2013) Diagnostic and Statistical Manual of Mental Disorders, 5th edition, Washington, DC: American Psychiatric Association. |
[20] | Lord C, Rutter M, Le Couteur A (1994) Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24: 659–685. doi: 10.1007/BF02172145 |
[21] | Le Couteur A, Lord C, Rutter M (2003) Autism Diagnostic Interview‐Revised (ADI‐R), Los Angeles: Western Psychological Services (WPS). |
[22] | Lord C, Rutter M, Goode S, et al. (1989) Autism Diagnostic Observation Schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord 19: 185–212. doi: 10.1007/BF02211841 |
[23] | Lord C, Rutter M, Dilavore P, et al. (2012) Autism Diagnostic Observation Schedule TM, Second Edition, Torrance, CA: Western Psychological Services (WPS). |
[24] | Schopler E, Reichler R, Rochen Renner B (1988) The childhood autism rating scale, Western Psychological Services. |
[25] | Gilliam JE (2013) Gilliam Autism Rating scale, third edition (GARS-3). Torrance, CA: WPS Publish. Available from: https://www.wpspublish.com/gars-3-gilliam-autism-rating-scale-third-edition. |
[26] | Wong D, Brasić J (2001) In vivo imaging of neurotransmitter systems in neuropsychiatry. Clin Neurosci Res 1: 35–45. doi: 10.1016/S1566-2772(00)00005-0 |
[27] | Wong D, Gründer G, Brašić J (2007) Brain imaging research: does the science serve clinical practice? Int Rev Psychiatry 19: 541–558. doi: 10.1080/09540260701564849 |
[28] | Brasic J, Mohamed M (2014) Human brain imaging of autism spectrum disorders, In: Seeman P, Madras B (Editors), Imaging of the human brain in health and disease, Academic Press, Elsevier Science, Oxford, UK, 373–406. |
[29] | Brasic J, Wong D, PET Scanning in Autism Spectrum Disorders. Medscape Drugs & Diseases, 2015. Available from: http://emedicine.medscape.com/article/1155568-overview. |
[30] | Lu F, Yuan Z (2015) PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant Imaging Med Surg 5: 433–447. |
[31] | Wong D, Maini A, Rousset O, et al. (2003) Positron emission tomography--a tool for identifying the effects of alcohol dependence on the brain. Alcohol Res Health 27: 161–173. |
[32] | Munro C, McCaul M, Wong D, et al. (2006) Sex differences in striatal dopamine release in healthy adults. Biol Psychiatry 59: 966–974. doi: 10.1016/j.biopsych.2006.01.008 |
[33] | Lammertsma AA (2001) PET/SPECT: functional imaging beyond flow. Vision Res 41: 1277–1281. doi: 10.1016/S0042-6989(00)00262-5 |
[34] | Sheffler Z, Pillarisetty L (2019) Physiology, Neurotransmitters, In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539894/. |
[35] | Chugani D (2012) Neuroimaging and neurochemistry of autism. Pediatr Clin North Am 59: 63–73. doi: 10.1016/j.pcl.2011.10.002 |
[36] | Zürcher N, Bhanot A, McDougle C, et al. (2015) A systematic review of molecular imaging (PET and SPECT) in autism spectrum disorder: current state and future research opportunities. Neurosci Biobehav Rev 52: 56–73. doi: 10.1016/j.neubiorev.2015.02.002 |
[37] | Ernst M, Zametkin A, Matochik J, et al. (1997) Low medial prefrontal dopaminergic activity in autistic children. Lancet 350: 638. |
[38] | Makkonen I, Riikonen R, Kokki H, et al. (2008) Serotonin and dopamine transporter binding in children with autism determined by SPECT. Dev Med Child Neurol 50: 593–597. doi: 10.1111/j.1469-8749.2008.03027.x |
[39] | Xiao-mian S, Jing Y, Chongxuna Z, et al. (2005) Study of 99mTc-TRODAT-1 imaging on human brain with children autism by single photon emission computed tomography. IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, 5: 5328–5330. |
[40] | Nakamura K, Sekine Y, Ouchi Y, et al. (2010) Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatry 67: 59–68. doi: 10.1001/archgenpsychiatry.2009.137 |
[41] | American Psychiatry Association, (1987) Diagnostic and Statistical Manual of Mental Disorders, Third Edition, Revised, Washington, DC: American Psychiatric Association. |
[42] | American Psychiatry Association, (2000) Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, Washington, DC: American Psychiatric Association. |
[43] | Frost J, Rosier A, Reich S, et al. (1993) Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson's disease. Ann Neurol 34: 423–431. doi: 10.1002/ana.410340331 |
[44] | Kung H, Kim H, Kung M, et al. (1996) Imaging of dopamine transporters in humans with technetium-99m TRODAT-1. Eur J Nucl Med 23: 1527–1530. doi: 10.1007/BF01254479 |
[45] | Kung M, Stevenson D, Plössl K, et al. (1997) [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med 24: 372–380. |
[46] | Chugani D, Chugani H, Wiznitzer M, et al. (2016) Efficacy of low-dose buspirone for restricted and repetitive behavior in young children with autism spectrum disorder: a randomized trial. J Pediatr 170: 45–53. doi: 10.1016/j.jpeds.2015.11.033 |
[47] | Blue ME, Johnston MV, Moloney CB, et al. (2008) Serotonin dysfunction in autism, In: Zimmerman, A.W. Author, Autism, Totowa, NJ: Humana Press, 111–132. |
[48] | Chandana S, Behen M, Juhász C, et al. (2005) Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. Int J Dev Neurosci 23: 171–182. doi: 10.1016/j.ijdevneu.2004.08.002 |
[49] | Chugani, D, Muzik O, Behen M, et al. (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45: 287–295. doi: 10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9 |
[50] | Chugani D, Muzik O, Rothermel R, et al. (1997) Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol 42: 666–669. doi: 10.1002/ana.410420420 |
[51] | Girgis R, Slifstein M, Xu X, et al. (2011) The 5-HT (2A) receptor and serotonin transporter in asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB. Psychiatry Res 194: 230–234. doi: 10.1016/j.pscychresns.2011.04.007 |
[52] | Beversdorf D, Nordgren R, Bonab A, et al. (2012) 5-HT2 receptor distribution shown by [18F] setoperone PET in high-functioning autistic adults. J Neuropsychiatry Clin Neurosci 24: 191–197. doi: 10.1176/appi.neuropsych.11080202 |
[53] | Goldberg J, Anderson G, Zwaigenbaum L, et al. (2009) Cortical serotonin type-2 receptor density in parents of children with autism spectrum disorders. J Autism Dev Disord 39: 97–104. doi: 10.1007/s10803-008-0604-4 |
[54] | American Psychiatry Association, (1994) Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Washington, DC: American Psychiatric Association. |
[55] | Huang X, Xiao X, Gillies R, et al. (2016) Design and automated production of 11C-alpha- methyl-l-tryptophan (11C-AMT). Nucl Med Biol 43: 303–308. doi: 10.1016/j.nucmedbio.2016.02.001 |
[56] | Mazurek M, Kanne S (2018) Leiter international performance scale, In: Kreutzer J, DeLuca J, Caplan B, (eds) Encyclopedia of Clinical Neuropsychology, Third Edition, Springer, Cham. |
[57] | Fatemi S, Wong D, Brašić J, et al. (2018) Metabotropic glutamate receptor 5 tracer [18F]-FPEB displays increased binding potential in postcentral gyrus and cerebellum of male individuals with autism: a pilot PET study. Cerebellum Ataxias 5: 3. doi: 10.1186/s40673-018-0082-1 |
[58] | Wong D, Waterhouse R, Kuwabara H, et al. (2013) 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, biokinetics, and radiation dosimetry. J Nucl Med 54: 388–396. doi: 10.2967/jnumed.112.107995 |
[59] | Mendez M, Horder J, Myers J, et al. (2013) The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: A pilot [11C]Ro15-4513 positron emission tomography study. Neuropharmacology 68: 195–201. doi: 10.1016/j.neuropharm.2012.04.008 |
[60] | Horder J, Andersson M, Mendez M, et al. (2018) GABAA receptor availability is not altered in adults with autism spectrum disorder or in mouse models. Sci Transl Med 10. |
[61] | Halldin C, Farde L, Litton J, et al. (1992) [11C]Ro 15-4513, a ligand for visualization of benzodiazepine receptor binding. Psychopharmacology (Berl) 108: 16–22. doi: 10.1007/BF02245279 |
[62] | Brasic J, Mathur A, Budimirovic D (2019) The urgent need for molecular imaging to confirm target engagement for clinical trials of fragile X syndrome and other subtypes of autism spectrum disorder. Arch Neurosci 6: e91831. |
[63] | Budimirovic D, Kravis E, Ercikson C, et al. (2017) Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J Neurodev Disord 9: 14. doi: 10.1186/s11689-017-9193-x |
[64] | World Health Organization, International Classification of Diseases, Tenth Revision, 2019. Available from: www.who.int/classifications/en/. |