Citation: Caterina Ida Zeppieri. Homogenisation of high-contrast brittle materials[J]. Mathematics in Engineering, 2020, 2(1): 174-202. doi: 10.3934/mine.2020009
[1] | Acerbi E, Chiadó Piat V, Dal Maso G, et al. (1992) An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal Theor 18: 481-496. doi: 10.1016/0362-546X(92)90015-7 |
[2] | Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variations and Free Discontinuity Problems. Oxford: Clarendon Press. |
[3] | Barchiesi M (2018) Toughening by crack deflection in the homogenization of brittle composites with soft inclusions. Arch Ration Mech Anal 227: 749-766. doi: 10.1007/s00205-017-1173-5 |
[4] | Barchiesi M, Dal Maso G (2009) Homogenization of fiber reinforced brittle materials: The extremal cases. SIAM J Math Anal 41: 1874-1889. doi: 10.1137/080744372 |
[5] | Barchiesi M, Focardi M (2011) Homogenization of the Neumann problem in perforated domains: An alternative approach. Calc Var Partial Dif 42: 257-288. doi: 10.1007/s00526-010-0387-2 |
[6] | Barchiesi M, Lazzaroni G, Zeppieri CI (2016) A bridging mechanism in the homogenization of brittle composites with soft inclusions. SIAM J Math Anal 48: 1178-1209. doi: 10.1137/15M1007343 |
[7] | Bouchitté G, Fonseca I, Leoni G, et al. (2002) A global method for relaxation in W1,p and in SBVp. Arch Ration Mech Anal 165: 187-242. doi: 10.1007/s00205-002-0220-y |
[8] | Braides A, Defranceschi A (1998) Homogenization of Multiple Integrals. New York: Oxford University Press. |
[9] | Braides A, Defranceschi A, Vitali E (1996) Homogenization of free discontinuity problems. Arch Ration Mech Anal 135: 297-356. doi: 10.1007/BF02198476 |
[10] | Braides A, Garroni A (1995) Homogenization of periodic nonlinear media with stiff and soft inclusions. Math Mod Meth Appl Sci 5: 543-564. doi: 10.1142/S0218202595000322 |
[11] | Braides A, Solci M (2013) Multi-scale free-discontinuity problems with soft inclusions. Boll Unione Mat Ital 1: 29-51. |
[12] | Cagnetti F, Dal Maso G, Scardia L, et al. (2019) Γ-convergence of free-discontinuity problems. Ann Inst H Poincaré Anal Non Linéaire 36: 1035-1079. doi: 10.1016/j.anihpc.2018.11.003 |
[13] | Cagnetti F, Dal Maso G, Scardia L, et al. (2019) Homogenisation of stochastic free-discontinuity problems. Arch Ration Mech Anal 233: 935-974. doi: 10.1007/s00205-019-01372-x |
[14] | Cagnetti F, Scardia L (2011) An extension theorem in SBV and an application to the homogenization of the Mumford-Shah functional in perforated domains. J Math Pur Appl 95: 349-381. doi: 10.1016/j.matpur.2010.03.002 |
[15] | Dal Maso G (1993) An Introduction to Γ-Convergence. Boston: Birkhäuser. |
[16] | Dal Maso G, Zeppieri CI (2010) Homogenization of fiber reinforced brittle materials: The intermediate case. Adv Calc Var 3: 345-370. |
[17] | Focardi M, Gelli MS, Ponsiglione M (2009) Fracture mechanics in perforated domains: A variational model for brittle porous media. Math Mod Meth Appl Sci 19: 2065-2100. doi: 10.1142/S0218202509004042 |
[18] | Giacomini A, Ponsiglione M (2006) A Γ-convergence approach to stability of unilateral minimality properties. Arch Ration Mech Anal 180: 399-447. doi: 10.1007/s00205-005-0392-3 |
[19] | Pellet X, Scardia L, Zeppieri CI (2019) Homogenization of high-contrast Mumford-Shah energies. SIAM J Math Anal 51: 1696-1729. doi: 10.1137/18M1189804 |
[20] | Scardia L (2008) Damage as Γ-limit of microfractures in anti-plane linearized elasticity. Math Mod Meth Appl Sci 18: 1703-1740. doi: 10.1142/S0218202508003170 |
[21] | Scardia L (2010) Damage as the Γ-limit of microfractures in linearized elasticity under the non-interpenetration constraint. Adv Calc Var 3: 423-458. |