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Abstract: This paper is an overview on some recent results concerning the variational analysis of
static fracture in the so-called high-contrast brittle composite materials. The paper is divided into
two main parts. The first part is devoted to establish a compactness result for a general class of free-
discontinuity functionals with degenerate (or high-contrast) integrands. The second part is focussed on
some specific examples which show that the degeneracy of the integrands may lead to non-standard
limit effects, which are specific to this high-contrast setting.
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1. Introduction

In this note we analyse the large-scale behaviour of high-contrast composite materials which can
undergo fracture. In a variational setting, the microscopic behaviour of high-contrast composites is
typically described by means of scale-dependent energy functionals with “degenerate” integrands. For
brittle materials the scale-dependent energies are of the general form

Fε(u) =

∫
Ω

fε(x,∇u) dx +

∫
S u

gε(x, νu) dHn−1, (1.1)

where ε > 0 describes both the composite-microstructure and the degeneracy of the mechanical
properties of the material (cf. (1.3)). In (1.1) the variable u : Ω ⊂ Rn → R belongs to S BV(Ω), the
space of special functions of bounded variation in Ω. In this simplified scalar setting, u represents an
anti-plane displacement and Ω is the cross-section of an infinite cylindrical body. Being u an
S BV-function, discontinuities are allowed and the discontinuity set of u, denoted by S u, models the
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cracks in the material. The deformation gradient Du can be decomposed into the sum of a bulk part
∇u dx and a surface part (u+ − u−)νuH

n−1xS u, where ∇u denotes the approximate gradient of u, u+ and
u− the traces of u on both sides of S u, and νu denotes the (generalised) normal to S u. The volume term
in Fε represents the elastic energy stored in the unfractured part of the material, whereas the surface
term in Fε accounts for the presence of cracks. According to the Griffith criterion, in brittle materials,
already for the smallest crack-amplitude, there is no interaction between the two lips of the crack, so
that the corresponding fracture energy does not depend on [u] = u+ − u−.

For finite-contrast brittle materials, the limit behaviour of energies of type (1.1) is by-now
well-understood and the corresponding theory provides a rigorous micro-to-macro upscaling for
brittle fracture. In fact, if fε and gε satisfy (mild regularity assumptions and) standard growth and
coercivity conditions of type

c1|ξ|
p ≤ fε(x, ξ) ≤ c2(1 + |ξ|p) and c3 ≤ gε(x, ν) ≤ c4, (1.2)

for every ε > 0, x, ξ ∈ Rn, ν ∈ Sn−1, for some p > 1, and 0 < c1 ≤ c2 < +∞, 0 < c3 ≤ c4 < +∞, then
in [18] Giacomini and Ponsiglione showed, among other, that the limit behaviour of Fε is captured by
a scale-independent free-discontinuity functional of the same type as Fε; i.e.,

F0(u) =

∫
Ω

f0(x,∇u) dx +

∫
S u

g0(x, νu) dHn−1,

with f0 and g0 also satisfying (1.2). Under these assumptions, Giacomini and Ponsiglione also showed
that volume and surface energy decouple in the limit, so that the energy density f0 is not affected by
the presence of the surface term in Fε, whereas the surface energy density g0 is not affected by the
volume term in Fε. In a recent work, Cagnetti, Dal Maso, Scardia and Zeppieri [12] generalised the
asymptotic analysis carried out in [18] and devised (nearly optimal) sufficient conditions which
ensure a macroscopic bulk-surface energy decoupling for a wide class of finite-contrast vectorial
free-discontinuity functionals which may also depend on [u]. The class of periodic free-discontinuity
functionals originally analysed by Braides, Defranceschi and Vitali [9] satisfy the sufficient conditions
provided in [12]. Moreover, random free-discontinuity functionals with stationary finite-contrast
integrands can be also seen as a special instance of those treated in [12], as shown by Cagnetti, Dal
Maso, Scardia and Zeppieri in [13]. Therefore, a volume-surface interaction can be ruled out for a
large class of finite-contrast free-discontinuity functionals. In this setting, in particular, microscopic
brittle energies always converge to macroscopic brittle energies. However, the general theory
established in [9, 12, 13, 18] is not well-suited for studying the large-scale behaviour of those brittle
composites whose different constituents have very different mechanical properties from one another.
Indeed, in this case the integrands fε and gε in (1.1) may exhibit a so-called high-contrast behaviour
and satisfy (1.2) only in a subset Ωε of Ω.

In the last decade there has been an ever increasing interest in the study of high-contrast
free-discontinuity functionals and in the derivation of their effective properties. In particular, the case
where (at least) one of the conditions in (1.2) is violated in “many small” periodically distributed
regions inside Ω has been considered (see, e.g., [3–6, 11, 14, 16, 17, 19–21]). Depending on the type of
degeneracy of fε and gε, nonstandard limit effects have been also observed. These nonstandard effects
are typical of the high-contrast setting and arise from a nontrivial volume-surface limit interaction,
which cannot be excluded in this degenerate setting. In fact, in the two companion papers [4, 16],
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Barchiesi, Dal Maso and Zeppieri show that when only gε is degenerate, already for very simple
free-discontinuity functionals of Mumford-Shah type, a bulk-surface interaction cannot be ruled out.
Namely, a volume-surface coupling can be observed when homogenising a material made of “many”
purely brittle inclusions periodically distributed in a connected unbreakable structure, whose
fracture-resistance is assumed to be infinite. This coupling produces a homogeneous material whose
overall behaviour is of ductile (or cohesive) type; in other words, the homogenised surface energy
explicitly depends on [u]. A similar phenomenon is also observed by Barchiesi, Lazzaroni and
Zeppieri [6] who show that a ductile behaviour can be seen as the macroscopic effect of a nontrivial
volume-surface interaction in the homogenisation of two purely brittle materials with a high-contrast
bulk energy. Moreover, in the recent work [19] Pellet, Scardia and Zeppieri prove, instead, that
nonstandard constitutive laws may arise when homogenising two purely brittle materials with a
high-contrast surface energy. The functionals analysed in [6] and [19] are both of type

F αε,βε
ε (u) =

∫
Ω

aε
( x
ε

)
|∇u|2 dx +

∫
S u

bε
( x
ε

)
dHn−1 (1.3)

where the elastic modulus aε and the fracture resistance (or fracture thoughness) bε are Q-periodic
functions and in the unit periodicity cell Q := (−1/2, 1/2)n are defined as

aε(y) =

αε if y ∈ Qr

1 if y ∈ Q \ Qr

bε(y) =

βε if y ∈ Qr

1 if y ∈ Q \ Qr

with αε, βε ∈ [0, 1], r ∈ (0, 1), and Qr := (−r/2, r/2)n. Since αε, βε are not bounded away from
zero, the functions aε and bε can be degenerate. In their turn, the integrands fε(y, ξ) = aε(y)|ξ|2 and
gε(y, ν) = bε(y) in (1.3) will not satisfy, in general, the coercivity conditions in (1.2).

The limit case αε = βε = 0 corresponds to the case of periodically perforated brittle materials
studied by Cagnetti and Scardia [14] and by Focardi, Gelli, and Ponsiglione [17] (see also Barchiesi
and Focardi [5] for more general free-discontinuity functionals). In spite of the strong degeneracy of
the coefficients aε and bε, which in this case are equal to zero in a “large” portion of Ω, in this case it
can be proven that the functionals F 0,0

ε exhibit a limit behaviour which is qualitatively similar to that
of free-discontinuity functionals with coercive integrands. Namely, in this case bulk and surface terms
do not interact in the limit.

The aim of this note is to show that, contrary to the coercive case, where general homogenisation
results can be proven to describe the limit behaviour of a large class of free-discontinuity functionals, in
the non-coercive setting, already for special functionals of type (1.3), a unified homogenisation theory
cannot be established. In fact, the limit behaviour of F αε,βε

ε is highly sensitive both to the choice of the
parameters αε and βε and to their vanishing rate compared to the period of the microstructure ε.

This note is divided into two main parts and organised as follows. In first part we will deal with
sequences of general free-discontinuity functionals of type (1.1) whose coefficients fε and gε are
“weakly coercive” or “degenerate”; i.e., they satisfy the lower bounds in (1.2) only in a set Ωε which
is obtained removing from Ω many small periodically distributed connected regions. We will use the
localisation method of Γ-convergence [8, 15] to prove that these kind of functionals are (pre)compact.
That is, up to subsequences, they always Γ-converge to a free-discontinuity functional of type∫

Ω

f (x,∇u) dx +

∫
S u

g(x, [u], νu) dHn−1.
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Moreover, the limit integrands f and g are non-degenerate and satisfy coercivity conditions of type
(1.2) for some positive constants ĉ1, ĉ3 which are strictly smaller than c1, c3, respectively. In this part
of the analysis a pivotal role is played by an extension result for S BV-functions defined in periodically
perforated domains, proved by Cagnetti and Scardia [14] (see also the later variant in [5]).

In the second part of this note we will specialise the general theory to some prototypical and yet
relevant model cases. Namely, we will briefly review the case of perforated (or porous) brittle
materials studied by Cagnetti and Scardia [14] and by Focardi, Gelli and Ponsiglione [17] (see
also [5]), the case of high-contrast brittle materials with soft inclusions treated by Barchiesi,
Lazzaroni and Zeppieri in [6], and eventually the case of high-contrast brittle materials with weak
inclusions analysed by Pellet, Scardia and Zeppieri in [19]. In particular we will show that the choice
of the integrands fε and gε in (1.1) strongly affects the form of the Γ-limit which can give rise to
macroscopic models accounting for damage as well as to models accounting for cohesive fracture.

2. Part I: A compactness result for high-contrast free-discontinuity functionals

In this part we will use the localisation method of Γ-convergence [8, 15] to prove a convergence
result for a general class of free-discontinuity functionals of brittle type, with degenerate coefficients.

In the choice of the convergence to compute the Γ-limit, a crucial role will be played by an extension
result for S BV-functions defined in periodically perforated domains due to Cagnetti and Scardia [14,
Theorem 1.3] and by a later variant due to Barchiesi and Focardi [5, Theorem 1].

2.1. Notation and setting of the problem

We list below a few notation which will be used throughout the paper.

• Ω ⊂ Rn denotes an open and bounded set with Lipschitz boundary. The set A(Ω) denotes the
collection of all open subsets of Ω;
• Q denotes the open unit cube of Rn centred at the the origin, whereas for x ∈ Rn and r > 0 we set

Qr(x) := rQ + x;
• for ν ∈ Sn−1 we denote with Qν the open unit cube of Rn centred at the the origin, with one face

orthogonal to ν and for x ∈ Rn and r > 0 we set Qν
r(x) := rQν + x;

• for x ∈ Rn and ν ∈ Sn−1 we denote by Πν(x) the hyperplane through x and perpendicular to ν; i.e.,
Πν(x) := {y ∈ Rn : (y − x) · ν = 0}. If x = 0 we simply write Πν;
• For u ∈ L1(Ω) and m > 0 the function um denotes the truncated function of u at level m; i.e.,

um := (u ∧ m) ∨ (−m);
• For ξ ∈ Rn we denote by uξ the linear function with gradient equal to ξ; i.e., uξ(x) := ξ · x, for

every x ∈ Rn;
• For x ∈ Rn, t ∈ R, and ν ∈ Sn−1 we denote with uν,tx the piecewise constant function taking values

0, t and jumping across the hyperplane Πν(x); i.e.,

uν,tx (y) :=

t if (y − x) · ν ≥ 0,
0 if (y − x) · ν < 0.

The functional setting we are going to consider in this note is that of S BV , the space of special
functions of bounded variation. We recall here only the definition of the spaces which are relevant for
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our analysis and we refer the reader to [2] for a comprehensive treatment on the subject. We set

S BV(Ω) := {u ∈ BV(Ω) : Du = ∇uLn + (u+ − u−)νudHn−1xS u}.

Here S u denotes the approximate discontinuity set of u, νu is the generalised normal to S u, u+ and u−

are the traces of u on both sides of S u. In this paper we work with the following vector subspace of
S BV(Ω)

S BV p(Ω) := {u ∈ S BV(Ω) : ∇u ∈ Lp(Ω) andHn−1(S u) < +∞},

where p > 1. We consider also the larger space of generalised special functions of bounded variation
in Ω,

GS BV(Ω) := {u ∈ L1(Ω) : um ∈ S BV(Ω) for all m ∈ N},

as well as
GS BV p(Ω) := {u ∈ GS BV(Ω) : ∇u ∈ Lp(Ω) andHn−1(S u) < +∞}.

We consider also

S BVpc(Ω) := {u ∈ S BV(Ω) : ∇u = 0 Ln-a.e.Hn−1(S u) < +∞};

it is known (see [2, Theorem 4.23]) that every u in S BVpc(Ω)∩L∞(Ω) is piecewise constant in the sense
of [2, Definition 4.21], namely there exists a Caccioppoli partition (Ei) of Ω such that u is constant Ln-
a.e. in each set Ei. Moreover, we set

P(Ω) := {u ∈ S BVpc(Ω) : u(x) ∈ {0, 1} Ln- a.e. in Ω}.

For u,w ∈ L1(U), in what follows, by “u = w near ∂U” we mean that there exists a neighbourhood V
of ∂U in Rn such that u = w Ln-a.e. in V ∩ U.

Let fk : Rn × Rn → [0,+∞) be Carathéodory functions such that

(H1) there exist p > 1 and 0 < c1 ≤ c2 < +∞ such that for every (x, ξ) ∈ Rn × Rn and for every k ∈ N

c1|ξ|
p ≤ fk(x, ξ) ≤ c2(1 + |ξ|p); (2.1)

(H2) fk(x, 0) = 0 for every x ∈ Rn and for every k ∈ N.

Let moreover gk : Rn × Sn−1 → (0,+∞) be Borel functions such that

(H3) there exist 0 < c3 ≤ c4 < +∞ such that for every (x, ν) ∈ Rn × Sn−1 and every k ∈ N

c3 ≤ gk(x, ν) ≤ c4; (2.2)

(H4) gk(x, ν) = gk(x,−ν), for every (x, ν) ∈ Rn × Sn−1 and every k ∈ N.

Let Ω ⊂ Rn be open bounded and with Lipschitz boundary and let K ⊂ Q be compact and such that
Q \ K has a Lipschitz boundary. We define

E := Rn \
⋃
i∈Zn

(K + i);
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the set E is open, connected, Q-periodic, and has a Lipschitz boundary. Let εk be a sequence of positive
numbers such that εk ↘ 0 as k → +∞ and denote by Ωk the εkQ-periodic set defined as Ωk := Ω∩ εkE
(see Figure 1).

Figure 1. Schematic of a high-contrast composite material.

Q

Ω

K

εk

Let moreover αk, βk ∈ [0, 1] and consider the sequence of functionals Fk : L1(Ω) −→ [0,+∞]
defined as

Fk(u) :=



∫
Ωk

fk(x,∇u) dx + αk

∫
Ω\Ωk

fk(x,∇u) dx +

∫
S u∩Ωk

gk(x, νu) dHn−1 + βk

∫
S u∩(Ω\Ωk)

gk(x, νu) dHn−1

if u ∈ S BV p(Ω),

+∞ otherwise in L1(Ω).
(2.3)

We observe that thanks to assumption (H2) the functionals Fk decrease by truncation, wherease they
do not satisfy the standard coercivity conditions required, e.g., in [9,12,18] since the coefficients αk, βk

are not bounded away from zero.

2.2. Equi-coercivity and choice of the convergence

Due to the possible degeneracy of the coefficients αk and βk, the functionals Fk are not, in general,
equi-coercive with respect to the strong L1(Ω)-convergence. Similarly as in [5, 11, 17, 19], in what
follows we give a notion of convergence on L1(Ω) which is weaker that the L1(Ω)-convergence and
ensures the equi-coercivity of the functionals Fk. This will be done by appealing to [5, Theorem 1].
For the readers’ convenience we recall here a slightly simplified version of this result which is useful
for our purposes.
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Theorem 2.1 (cf. Theorem 1 in [5]). Let (uk) ⊂ S BV p(Ωk) be such that

sup
k

( ∫
Ωk

|uk|
p dx +

∫
Ωk

|∇uk|
p dx +Hn−1(S uk ∩Ωk)

)
< +∞. (2.4)

Then, there exist (ũk) ⊂ S BV p(Ω), with ũk = uk a.e. in Ωk, and a function u ∈ GS BV p(Ω)∩ Lp(Ω) such
that (up to subsequences) ũk → u in L1(Ω).

If moreover supk ‖uk‖L∞(Ωk) < +∞ then u ∈ S BV p(Ω) ∩ L∞(Ω) and ũk → u in Lp(Ω).

Let (uk) ⊂ L1(Ω) be a sequence satisfying

sup
k
‖uk‖Lp(Ωk) < +∞ and sup

k
Fk(uk) < +∞.

Then, clearly (uk) ⊂ S BV p(Ωk); moreover in view of (H1) and (H3) the sequence (uk) satisfies the
uniform bound (2.4). Therefore invoking Theorem 2.1 immediately yields the existence of a function
u ∈ GS BV p(Ω) ∩ Lp(Ω) and a sequence (ũk) ⊂ S BV p(Ω) with ũk = uk a.e. in Ωk, such that (up to
subsequences not relabelled) ũk → u in L1(Ω).

This observation motivates the choice of the following notion of convergence on L1(Ω).

Definition 2.2 (Convergence). Let (uk) be a sequence in L1(Ω). We say that (uk) converges to a function
u ∈ L1(Ω), and we write uk { u, if there exists a sequence (ũk) ⊂ L1(Ω) such that ũk = uk a.e. in Ωk,
and ũk converges to u in L1(Ω).

Remark 2.3 (Uniqueness of the limit). We observe that since C(K) := Ln(Q \ K) > 0, then the limit
in the sense of Definition 2.2 is well-defined. Indeed, assume that uk { u1 and uk { u2. Then by
definition there exist (ũ1,k), (ũ2,k) ⊂ L1(Ω) such that ũ1,k = ũ2,k = uk in Ωk and ũ1,k → u1 and ũ2,k → u2

in L1(Ω). Therefore

0 = lim
k→+∞

∫
Ωk

|ũ1,k − ũ2,k| dx = lim
k→+∞

∫
Ω

|ũ1,k − ũ2,k|χΩk dx = C(K)
∫

Ω

|u1 − u2| dx,

where the last inequality follows by the Riemann-Lebesgue Theorem applied to the εkQ-periodic
function χΩk . Then, since C(K) > 0 we necessarily have u1 = u2 a.e. in Ω.

We notice moreover that the convergence uk { u readily implies

lim
k→+∞

‖uk − u‖L1(Ωk) = 0.

Remark 2.4 (Convergence of truncated functions). Let (uk) ⊂ L1(Ω) be such that uk { u for some
u ∈ L1(Ω). Let m ∈ N and denote by (um

k ) the sequence of truncated functions of uk at level m, then
um

k { um where um denotes the truncated function of u at level m. Indeed, set vk := (ũk)m, then vk = um
k

a.e. in Ωk, moreover since ũk → u in L1(Ω) then (ũk)m → um in L1(Ω), and actually in any Lp(Ω).

In what follows we study the Γ-convergence of the functionals Fk with respect to the convergence
as in Definition 2.2. To this end we give the following sequential notion of Γ-convergence.

Definition 2.5 (Sequential Γ-convergence). Let Fk,F : L1(Ω) −→ [0,+∞]; we say that the functionals
Fε Γ-converge to F with respect to the convergence as in Definition 2.2 if for every u ∈ L1(Ω) the two
following conditions are satisfied:
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(i) (Ansatz-free lower bound) For every (uk) ⊂ L1(Ω) with uk { u we have

F (u) ≤ lim inf
k→+∞

Fk(uk);

(ii) (Existence of a recovery sequence) There exists (ūk) ⊂ L1(Ω) with ūk { u such that

F (u) ≥ lim sup
k→+∞

Fk(ūk).

Remark 2.6. It is standard to show that F is lower semicontinuous with respect to the convergence as
in Definition 2.2 and hence with respect to the strong L1(Ω)-convergence.

For every u ∈ L1(Ω) we consider the functionals

Γ- lim inf
k→+∞

Fk(u) := inf
{

lim inf
k→+∞

Fk(uk) : uk { u
}

(2.5)

and
Γ- lim sup

k→+∞

Fk(u) := inf
{

lim sup
k→+∞

Fk(uk) : uk { u
}
. (2.6)

It is easy to show that the infima in (2.5) and (2.6) are actually attained.
In what follows we also use the compact notation

F ′(u) := Γ- lim inf
k→+∞

Fk(u) and F ′′(u) := Γ- lim sup
k→+∞

Fk(u). (2.7)

It is immediate to see that Definition 2.5 is equivalent to F ′ = F ′′ = F in L1(Ω).

Remark 2.7 (The case αk, βk = 0). In the case of porous brittle materials [5,14,17], which corresponds
to the parameter choice αk, βk = 0, the Γ-convergence of the functionals Fk can be equivalently studied
with respect to the strong L1(Ω)-convergence. Indeed, in this case a sequence (uk) with equibounded
energy can be replaced by the L1(Ω)-converging sequence (ũk) given by Theorem 2.1, without changing
the energy.

The following proposition shows that the domain of the Γ-limit of Fk (if it exists) is GS BV p(Ω).

Proposition 2.8 (Domain of the Γ-limit). Let F ′ and F ′′ be as in (2.7); then

domF ′ = domF ′′ = GS BV p(Ω).

Proof. We first show that GS BV p(Ω) ⊂ domF ′′. By the growth conditions (2.1) and (2.2) we have
Fk(u) ≤ G(u) where

G(u) :=

c2

∫
Ω

(1 + |∇u|p) dx + c3H
n−1(S u ∩Ω) in GS BV p(Ω)

+∞ otherwise in L1(Ω)
(2.8)

The functional G is lower semicontinuous with respect to the strong L1(Ω)-convergence, hence we
have

inf
{

lim sup
k→+∞

Fk(uk) : uk → u in L1(Ω)
}
≤ G(u).
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Since the convergence in Definition 2.2 is weaker than the L1(Ω)-convergence we then have F ′′ ≤ G,
and thus the desired inclusion.

We now prove that domF ′ ⊂ GS BV p(Ω). To this end, let u ∈ domF ′ then there exists (uk) ⊂ L1(Ω)
with uk { u such that lim infk Fk(uk) = F (u) < +∞. Then, up to subsequences (not relabelled) we
have supk F (uk) < +∞, thus in particular (uk) ⊂ S BV p(Ω).

Let m ∈ N and let um
k be the truncated function of uk at level m; then (um

k ) ⊂ S BV p(Ω) ∩ L∞(Ω).
Since the functionals Fk decrease by truncation, for every fixed m ∈ N it also holds supk Fk(um

k ) < +∞.
Therefore, for m ∈ N fixed we can appeal to Theorem 2.1 to deduce the existence of a sequence
(vk) ⊂ L1(Ω) such that vk = um

k a.e. in Ωk and of a function v ∈ S BV p(Ω) such that up to subsequence
(not relabelled) vk → v in L1(Ω). Since uk { u we have

0 = lim
k→+∞

∫
Ωk

|vk − um
k | dx = lim

k→+∞

∫
Ω

|vk − (ũk)m|χΩk dx = C(K)
∫

Ω

|v − um| dx,

therefore v = um a.e. in Ω. Eventually, the arbitrariness of m ∈ N yields u ∈ GS BV p(Ω). �

2.3. Γ-convergence and integral representation

In this section we show that, up to subsequences, the functionals Fk Γ-converge to a
free-discontinuity functional of the form

F (u) =

∫
Ω

f∞(x,∇u) dx +

∫
S u

g∞(x, u+ − u−, νu) dHn−1.

for some f∞ and g∞. Moreover, we show that, despite the degeneracy of the coefficients αk, βk, the limit
integrands f∞ and g∞ satisfy standard coercivity conditions similar to (2.1) and (2.2), respectively.

If not otherwise specified, in what follows the Γ-convergence of the functionals Fk is always
understood in the sense of Definition 2.5.

To prove the existence of a Γ-convergent subsequence of Fk we make use of the so-called
localisation method [8, 15] which we adapt to the sequential notion of Γ-convergence as in Definition
2.5.

We start by localising the functionals Fk; that is we consider Fk : L1(Ω)×A(Ω) −→ [0,+∞] defined
as

Fk(u,U) :=



∫
Uk

fk(x,∇u) dx + αk

∫
U\Uk

fk(x,∇u) dx +

∫
S u∩Uk

gk(x, νu) dHn−1 + βk

∫
S u∩(U\Uk)

gk(x, νu) dHn−1

if u ∈ S BV p(U),

+∞ otherwise in L1(Ω),
(2.9)

where Uk := U ∩ εkE.
We also define the localised versions of (2.5) and (2.6); i.e., for every U ∈ A(Ω) we consider the

functionals defined as

F ′(·,U) := Γ- lim inf
k→+∞

Fk(·,U), F ′′(·,U) := Γ- lim sup
k→+∞

Fk(·,U). (2.10)
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Remark 2.9 (Properties of F ′,F ′′). It is easy to show that F ′ and F ′′ are lower semicontinuous with
respect to the convergence in Definition 2.2, local, and that they decrease by truncation. Moreover, as
set functions they are both increasing, whereas F ′ is also superadditive.

Remark 2.10 (On assumption (H2)). If we drop assumption (H2) the functionals Fk will not decrease
by truncation, but rather satisfy

Fk(um,U) ≤ Fk(u,U) + c2L
n(Uk ∩ {|u| ≥ m}) + αk c2L

n(U \ Uk ∩ {|u| ≥ m}). (2.11)

If αk is infinitesimal, the inequality in (2.11) implies

F ′(um,U) ≤ F ′(u,U) +
c2

m
‖u‖L1(Ω), (2.12)

(and analogously for F ′′). In fact, by definition of Γ-liminf there exists a sequence (uk) ⊂ L1(Ω) such
that uk { u and F ′(u,U) = lim infk→+∞ Fk(uk,U). Then if um

k is the truncated function of uk at level
m, by (2.11) we get

Fk(um
k ,U) ≤ Fk(uk,U) + c2L

n(Uk ∩ {|uk| ≥ m}) + αk c2L
n(U \ Uk ∩ {|uk| ≥ m})

≤ Fk(uk,U) + c2L
n(Uk ∩ {|ũk| ≥ m}) + αk c2L

n(Ω)

≤ Fk(uk,U) + c2L
n(U ∩ {|ũk| ≥ m}) + αk c2L

n(Ω)

where ũk is as in Definition 2.2 and thus ũk → u in L1(Ω). Therefore, taking the liminf as k → +∞

gives
lim inf

k→+∞
Fk(um

k ,U) ≤ F ′(u,U) + c2L
n(U ∩ {|u| ≥ m}),

hence (2.12) follows by the definition of Γ-liminf, taking into account that um
k { um, and by the

Chebyshev inequality. Therefore, (2.12) ensures thatF ′ “almost” decreases by truncation up to an error
which becomes small for m large. Inequality (2.12) is then enough to to carry out the Γ-convergence
analysis below (cf. [12]). Hence, if αk is infinitesimal assumption (H2) can be dropped.

However, if the sequence αk is uniformly bounded from below, we have no control on the term
αk c2L

n(U \Uk∩{|uk| ≥ m}), therefore from (2.11) we cannot infer (2.12). Since with we want to study
the Γ convergence of Fk for any choices of αk ∈ [0, 1], assumption (H2) is actually necessary.

In general the set functions F ′(u, ·) and F ′′(u, ·) are not inner regular. Then we consider their inner
regular envelopes defined as:

F ′−(u,U) := sup
{
F ′(u,V) : V ⊂⊂ U, V ∈ A(Ω)

}
.

and
F ′′− (u,U) := sup

{
F ′′(u,V) : V ⊂⊂ U, V ∈ A(Ω)

}
.

Remark 2.11 (Properties ofF ′−,F
′′
− ). The functionalsF ′− andF ′′− are lower semicontinuous with respect

to the convergence in Definition 2.2 [15, Remark 15.10], local [15, Remark 15.25], and it is immediate
to check that they decrease by truncation. Furthermore, as set functions, they are both increasing and
F ′− is superadditive [15, Remark 15.10].

The following compactness result is the analogue of [15, Theorem 16.9], when the sequential notion
of Γ-convergence in Definition 2.5 is considered. We omit its proof since it is standard.
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Proposition 2.12 (Compactness by Γ-convergence). Let Fk be the localised functionals as in (2.9).
Then there exists a subsequence (Fk j) ⊂ (Fk) such that the corresponding functionals F ′ and F ′′

defined in (2.10) satisfy F ′− = F ′′− .

We now set
F := F ′− = F ′′− . (2.13)

In what follows we show that actually F coincides with the Γ-limit of the subsequence (Fk j). To this
end we start noticing that by monotonicity we always have F ′′− = F ′− ≤ F

′ ≤ F ′′. Therefore, if we
show that F ′′ = F ′′− ; i.e., that F ′′ is inner regular, we immediately get F ′ = F ′′ = F and therefore
that Fk j(·,U) Γ-converges to F (·,U) for every U ∈ A(Ω), as desired.

A crucial preliminary result needed to prove the inner-regularity of F ′′ is the so-called
fundamental estimate, which has to hold uniformly in k. Since the Γ-limit is computed with respect to
the convergence in Definition 2.2, the fundamental estimate we need is non-standard. Namely, we
have to prove that the error in the fundamental estimate tends to zero when uk { u. This is achieved
by first showing that the error goes like ‖uk − u‖Lp(Ωk) and then by resorting to a truncation argument.

We notice that an analogous estimate for degenerate functionals defined in Sobolev spaces can be
found in [10, Proposition 3.3]. Whereas in the S BV-setting, for functionals of Mumford-Shah type
with degenerate surface energy it can be found in the recent [19, Lemma 4.4].

Following [10] we start showing how to construct suitable cut-off functions which are constant in⋃
i∈Zn εk(K + i). To this end let δ > 0 be small enough so that the set Kδ := {x ∈ Rn : dist(x,K) < δ}

satisfies Kδ ⊂⊂ Q. Let ψ ∈ C∞0 (Q) be a cut-off function between K and Kδ (that is 0 ≤ ψ ≤ 1, ψ ≡ 1 on
K, and sptψ ⊂ Kδ) such that |∇ψ| ≤ 2

η
.

For k ∈ N and i ∈ Zn, we define the operator Rk
i : W1,∞

loc (Rn)→ W1,∞
loc (Rn) as

Rk
i (φ)(x) :=

(
1 − ψ

(
x
εk
− i

))
φ(x) + ψ

(
x
εk
− i

)
–
∫

εkKδ+εki
φ(y) dy.

By definition we have that
Rk

i (φ)(x) = φ(x) if x < εkKδ + εki,

while Rk
i is constant in εkK + εki, namely we have

Rk
i (φ)(x) = –

∫
εkKδ+εki

φ(y) dy if x ∈ εkK + εki.

Finally, we consider the operator Rk : W1,∞
loc (Rn)→ W1,∞

loc (Rn) defined as

Rk(φ)(x) :=

Rk
i (φ)(x) if x ∈ εkKδ + εki, i ∈ Zn,

φ(x) otherwise.

Let U ⊂ Rn be open and bounded and let φ ∈ W1,∞(U) then ∇Rk(φ) is uniformly bounded in k. More
precisely, we have

‖∇Rk(φ)‖L∞(U;Rn) ≤

(2
δ

d + 1
)
‖∇φ‖L∞(U;Rn), (2.14)
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where d denotes the diameter of Kδ. In fact,

‖∇Rk(φ)‖L∞(U;Rn) ≤
2
εkδ

sup
i

∥∥∥∥∥∥φ − –
∫

εKδ+εi
φ(y) dy

∥∥∥∥∥∥
L∞(εkKδ+εki;Rn)

+ ‖∇φ‖L∞(U;Rn)

and ∥∥∥∥∥∥φ − –
∫

εkKδ+εki
φ(y) dy

∥∥∥∥∥∥
L∞(εkKδ+εki;Rn)

≤ εkd‖∇φ‖L∞(U;Rn).

In the next proposition we make use of the operator Rk to construct cut-off functions whose gradient
vanishes in Rn \ εkE; these cut-off functions are then used to prove the desired fundamental estimate.

Proposition 2.13 (Fundamental estimate). For every η > 0, and for every U′, U′′, V ∈ A(Ω), with
U′ ⊂⊂ U′′, there exist two constants M(η) > 0 and kη ∈ N satisfying the following property: For every
k > kη, for every u ∈ L1(Ω) with u ∈ S BV p(U′′), and for every v ∈ L1(Ω) with v ∈ S BV p(V), there
exists a function ϕ ∈ C∞0 (Ω) with ϕ = 1 in a neighbourhood of U′, sptϕ ⊂ U′′ and 0 ≤ ϕ ≤ 1 such that

Fk(ϕu + (1 − ϕ)v,U′ ∪ V) ≤ (1 + η)
(
Fk(u,U′′) + Fk(v,V)

)
+ M(η)||u − v||Lp(S∩εkE) (2.15)

where S := (U′′ \ U′) ∩ V.

Proof. Let U′,U′′,V ∈ A(Ω) be as in the statement. Let η > 0 be fixed and choose N ∈ N in a way
such that

1
N

max
{
c2L

n((U′′ \ U′) ∩ V), 3p−1 max
{c2

c1
,

c4

c3

}}
< η. (2.16)

Let moreover U ∈ A(Ω) be such that U′ ⊂⊂ U ⊂⊂ U′′ and consider the open sets

U′ ⊂⊂ U1 ⊂⊂ . . . ⊂⊂ U3N ⊂⊂ U′′

where
Ul :=

{
x : dist(x,U′) <

dist(U′, ∂U)
3N

l
}
, for every l = 1, . . . , 3N.

We notice that by definition of Ul we have that

dist(Ul, ∂Ul+1) =
1

3N
, for every l = 1, . . . , 3N − 1. (2.17)

For every j = 0, . . . ,N − 1 let φ j be a cut-off function between U3 j+1 and U3 j+2 with |∇φ j| < 4N.
Let kη ∈ N be such that

εkd <
1

3N
for every k > kη, (2.18)

where d := diam(Kδ) <
√

2.
If i ∈ Zn is such that (εkK + εki) ∩ Ul , Ø for every k > kη, then thanks to (2.17)–(2.18) we can

deduce that (εkK + εki) ∩ (Rn \ Ul+1) = Ø. Therefore the functions ϕ j := Rk(φ j) are cut-off functions
between the sets U3 j and U3( j+1), for every j = 0, . . . ,N − 1 (where we have set U0 := U′).

Now let u ∈ S BV p(U′′) and v ∈ S BV p(V); for every j = 0, . . . ,N − 1 fixed we have

Fk(ϕ ju + (1 − ϕ j)v,U′ ∪ V) = Fk(u, (U′ ∪ V) ∩ U3 j) + Fk(v,V \ U3( j+1))
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+Fk(ϕ ju + (1 − ϕ j)v,V ∩ (U3( j+1) \ U3 j)) ≤ Fk(u,U′′) + Fk(v,V)

+Fk(ϕ ju + (1 − ϕ j)v,V ∩ (U3( j+1) \ U3 j)).

We set
w j := ϕ ju + (1 − ϕ j)v, S j := V ∩ (U3( j+1) \ U3 j)

and estimate the term Fk(w j, S j). We clearly have

Fk(w j, S j) = Fk(w j, S j \ εkE) + Fk(w j, S j ∩ εkE). (2.19)

By construction ∇ϕ j = 0 in Rn \ εkE, therefore appealing to (2.1) and (2.2) we deduce

Fk(w j, S j \ εkE) = αk

∫
S j\εkE

fk(x, ϕ j∇u + (1 − ϕ j)∇v) dx + βk

∫
(S j\εkE)∩S w j

gk(x, νw j) dHn−1

≤ c2αk

(
Ln(S j \ εkE) +

∫
S j\εkE
|∇u|p dx +

∫
S j\εkE
|∇v|p dx

)
+c4βk

(
Hn−1((S j \ εkE) ∩ S u) +Hn−1((S j \ εkE) ∩ S v)

)
≤ c2αkL

n(S j \ εkE) +
c2

c1

(
αk

∫
S j\εkE

fk(x,∇u) dx + αk

∫
S j\εkE

fk(x,∇v) dx
)

+
c4

c3

(
βk

∫
(S j\εkE)∩S u

gk(x, νu) dHn−1 + βk

∫
(S j\εkE)∩S v

gk(x, νv) dHn−1
)

≤ c2αkL
n(S j \ εkE) + max

{c2

c1
,

c4

c3

}(
Fk(u, S j \ εkE) + Fk(v, S j \ εkE)

)
. (2.20)

Moreover, again invoking (2.1) and (2.2), in εkE we have

Fk(w j, S j ∩ εkE) =

∫
S j∩εkE

fk(x,∇w j) dx +

∫
S j∩εkE∩S w j

gk(x, νw j) dHn−1

≤ c2

(
Ln(S j ∩ εkE) +

∫
S j∩εkE
|∇ϕ j(u − v) + ϕ j∇u + (1 − ϕ j)∇v|p dx

)
+c4

(
Hn−1((S j ∩ εkE) ∩ S u) +Hn−1((S j ∩ εkE) ∩ S v)

)
≤ c2L

n(S j ∩ εkE) + c23p−1‖∇ϕ j‖
p
L∞(U;Rn)

∫
S j∩εkE
|u − v|p dx

+3p−1 max
{c2

c1
,

c4

c3

}(
Fk(u, S j ∩ εkE) + Fk(v, S j ∩ εkE)

)
. (2.21)

Since |∇φ j| ≤ 4N, combining the definition of ϕ j with (2.14) gives

‖∇ϕ j‖L∞(U;Rn) ≤

(2
δ

d + 1
)
4N. (2.22)

In view of (2.19), by gathering (2.20)–(2.22) we then obtain for every j = 0, . . . ,N − 1

Fk(w j, S j) ≤ c2L
n(S j) + 3p−1 max

{c2

c1
,

c4

c3

}(
Fk(u, S j) + Fk(v, S j)

)
+ M(η)

∫
S j∩εkE
|u − v|p dx,
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where
M(η) := c23p−1

(2
δ

d + 1
)p

(4N)p.

Therefore there exists j∗ ∈ {0, . . . ,N − 1} such that

Fk(w j∗ , S j∗) ≤
1
N

N−1∑
i=0

Fk(w j, S j) ≤
c2

N
Ln((U′′ \ U′) ∩ V)

+
3p−1

N
max

{c2

c1
,

c4

c3

}(
Fk(u,U′′) + Fk(v,V)

)
+ M(η)

∫
(U′′\U′)∩V∩εkE

|u − v|p dx.

Finally the thesis follows from (2.16) by choosing ϕ j∗ as a cut-off function and setting S := (U′′ \U′)∩
V . �

Thanks to the fundamental estimate Proposition 2.13 we are now able to prove the following abstract
Γ-convergence result for the sequence of localised functionals Fk j(·,U).

Theorem 2.14 (Abstract Γ-convergence and properties of the Γ-limit). Let F be as in (2.13), then:

a. (locality and lower semicontinuity) for every U ∈ A(Ω), the functional F (·,U) is local and lower
semicontinuous with respect to the L1(Ω)-convergence;

b. (measure property) for every u ∈ GS BV p(Ω), the set function F (u, ·) is the restriction toA(Ω) of
a Radon measure on Ω;

c. (Γ-convergence) for every U ∈ A(Ω) it holds F (·,U) = F ′(·,U) = F ′′(·,U) on GS BV p(Ω);
d. (translational invariance in u) for every u ∈ L1(Ω) and U ∈ A(Ω) there holds F (u + s,U) =

F (u,U) for every s ∈ R.

Proof. Since the L1(Ω)-convergence implies the convergence in the sense of Definition 2.2, property 1
immediately follows from Remark 2.11. In view of Remark 2.11, property 2 follows by the De Giorgi
and Letta criterion (see, e.g., [15, Theorem 14.23]) once we show that for every u ∈ GS BV p(Ω) the
set function F (u, ·) is subadditive. In its turn, the subadditivity of F (u, ·) follows from Proposition
2.13. Since in our setting this proof is not entirely standard, we discuss it in detail for the readers’
convenience.

We start observing that on GS BV p(Ω) the functional F satisfies the following limsup-type
inequality: For every u ∈ GS BV p(Ω) and for every U,U′ ∈ A(Ω) with U′ ⊂⊂ U, there exists a
sequence (u j) ⊂ GS BV p(U′) ∩ L1(Ω) with u j { u such that

lim sup
j→+∞

Fk j(u j,U′) ≤ F (u,U)

(see, e.g., [15, Proposition 16.4 and Remark 16.5] also recalling that the infimum in the definition of
F ′′ is actually attained).

Now let U,V ∈ A(Ω) and let u ∈ GS BV p(Ω) ∩ L∞(Ω). Fix any U′ ⊂⊂ U, V ′ ⊂⊂ V , U′,V ′ ∈ A(Ω).
Choose an open set U′′ such that U′ ⊂⊂ U′′ ⊂⊂ U and two sequences (u j) ⊂ GS BV p(U′′)∩ L1(Ω) and
(v j) ⊂ GS BV p(V ′) ∩ L1(Ω), with u j { u and v j { u such that

lim sup
j→+∞

Fk j(u j,U′′) ≤ F (u,U), lim sup
j→+∞

Fk j(v j,V ′) ≤ F (u,V). (2.23)

Mathematics in Engineering Volume 2, Issue 1, 174–202.



188

Since the functionals Fk decrease by truncation, we can additionally assume that ‖u j‖L∞(Ω), ‖v j‖L∞(Ω) ≤

‖u‖L∞(Ω); clearly,
lim

j→+∞
‖u j − u‖Lp(Ωk j )

= lim
j→+∞

‖v j − u‖Lp(Ωk j )
= 0. (2.24)

Let η > 0 be fixed and arbitrary. The fundamental estimate Proposition 2.13 provides us with constants
M(η) > 0 and jη ∈ N and with a sequence (ϕ j) of cut-off functions between U′ and U′′ such that

Fk j(ϕ ju j + (1 − ϕ j)v j,U′ ∪ V ′)

≤ (1 + η)
(
Fk j(u j,U′′) + Fk j(v j,V ′)

)
+ M(η)‖u j − v j‖

p
Lp(Ωk j )

for every j ≥ jη. Hence appealing to (2.23), to the convergence ϕ ju j + (1 − ϕ j)v j { u, and to the
obvious inequality F ≤ F ′, by taking the limit as j→ +∞, we get

F (u,U′ ∪ V ′) ≤ (1 + η)
(
F (u,U) + F (u,V)

)
.

Now letting η→ 0, and then U′ ↗ U, V ′ ↗ V in view of the inner-regularity of F we get

F (u,U ∪ V) ≤ F (u,U) + F (u,V), (2.25)

hence the subadditivity of F (u, ·) for u ∈ GS BV p(Ω) ∩ L∞(Ω).
Now let u ∈ GS BV p(Ω) and, for every m ∈ N, set um := (u ∧ m) ∨ (−m). Then, since F decreases

by truncation (2.25) immediately gives

F (um,U ∪ V) ≤ F (u,U) + F (u,V).

Then, taking the limit as m → +∞, in view of the convergence um → u in L1(Ω) and the lower
semicontinuity of F we obtain

F (u,U ∪ V) ≤ lim inf
m→+∞

F (um,U ∪ V) ≤ F (u,U) + F (u,V),

and thus the subadditivity of F (u, ·) for every u ∈ GS BV p(Ω).
The proof of property 3 is achieved by showing that F ′′ is inner-regular. Indeed, this is equivalent

to F ′′ = F ′′− , which by definition of F implies F ′′ ≤ F ≤ F ′. Since clearly F ′ ≤ F ′′, we actually
deduce that F is the Γ-limit of Fk j .

The inner regularity of F ′′ follows from the fundamental estimate Proposition 2.13. To see this, for
every U ∈ A(Ω) let G(·,U) be the localised version of the functional G defined in (2.8); i.e.,

G(u,U) :=

c2

∫
U

(1 + |∇u|p) dx + c4H
n−1(S u ∩ U) if u ∈ GS BV p(U),

+∞ otherwise in L1(Ω).
(2.26)

Now fix W ∈ A(Ω) and u ∈ GS BV p(Ω); since G(u, ·) is the restriction to A(Ω) of a Radon measure,
for every η > 0 there exists a compact set W̃ ⊂ W such that and MS (u,W \ W̃) < η.

Now choose U,U′ ∈ A(Ω) satisfying W̃ ⊂ U′ ⊂⊂ U ⊂⊂ W and set V := W \ W̃. Recalling that
F ′′(u, ·) is increasing, appealing to Proposition 2.13 easily gives

F ′′(u,W) ≤ F ′′(u,U′ ∪ V) ≤ F ′′(u,U) + F ′′(u,V) = F ′′(u,U) + F ′′(u,W \ W̃).
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Recalling that F ′′ ≤ G, by taking the sup on U ⊂⊂ W we get

F ′′(u,W) ≤ F ′′− (u,W) + G(u,W \ W̃) ≤ F ′′− (u,W) + η.

Hence, by the arbitrariness of η > 0 we get F ′′(u,W) ≤ F ′′− (u,W) for every W ∈ A(Ω) and every
u ∈ GS BV p(Ω). Since the opposite inequality is always satisfied, we readily deduce the inner regularity
of F ′′(u, ·), as desired.

Eventually, the proof of property 4 is standard and follows as in, e.g., [9, Lemma 3.7]. �

In the following theorem we show that the Γ-limit F can be represented in an integral form as a
free-discontinuity functional. Moreover, thanks to [5, Theorem 4] the functional F turns out to be
non-degenerate, unlike the functionals Fk.

Theorem 2.15 (Integral representation of the Γ-limit). Let F be as in Theorem 2.14. Then, there exist
a Carathéodory function f∞ : Rn × Rn → [0,+∞) and a Borel function g∞ : Rn × Sn−1 → (0,+∞) such
that

F (u,U) =

∫
U

f∞(x,∇u) dx +

∫
S u∩U

g∞(x, [u], νu) dHn−1 (2.27)

for every u ∈ GS BV p(Ω) and every U ∈ A(Ω).
Furthermore, the function f∞ : Rn × Rn → [0,+∞) satisfies the following properties:
i) (convexity in ξ) for a.e. x ∈ Rn, f∞(x, ·) is convex;
ii) (p growth and coercivity) there exists c̃1 > 0 such that for a.e. x ∈ Rn and for every ξ ∈ Rn it

holds
c̃1|ξ|

p ≤ f∞(x, ξ) ≤ c2(1 + |ξ|p), (2.28)

where c2 is as in (2.1).

The function g∞ : Rn × R × Sn−1 → [0,+∞) satisfies the following properties:

iii) (monotonicity in t and symmetry) for a.e. x ∈ Rn and for every ν ∈ Sn−1, g∞(x, ·, ν) is
nondecreasing on (0,+∞) and satisfies the symmetry condition g∞(x,−t,−ν) = g∞(x, t, ν) for every
t ∈ R;

iv) (subadditivity in t) for a.e. x ∈ Rn and for every ν ∈ Sn−1

g∞(x, t1 + t2, ν) ≤ g∞(x, t1, ν) + g∞(x, t2, ν),

for every t1, t2 ∈ R;
v) (convexity in ν) for a.e. x ∈ Rn and for every t ∈ R, the 1-homogeneous extension of g∞(x, t, ·) to

Rn is convex. Equivalently, for a.e. x ∈ Rn and for every t ∈ R the function g∞ satisfies

g∞(x, t, ν) ≤ λ1g∞(x, t, ν1) + λ2g∞(x, t, ν2),

for every ν, ν1, ν2 ∈ S
n−1, λ1, λ2 ≥ 0 such that λ1ν1 + λ2ν2 = ν;

vi) (bounds) there exists c̃3 > 0 such that for a.e. x ∈ Rn, for every t ∈ R, and every ν ∈ Sn−1 it holds

c̃3 ≤ g∞(x, t, ν) ≤ c4, (2.29)

where c4 is as in (2.2).
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Proof. Let Ek : L1(Ω) ×A(Ω) −→ [0,+∞] be the functionals defined as

Ek(u,U) :=

c1

∫
Uk

|∇u|p dx + c3H
n−1(S u ∩ Uk) if u ∈ S BV p(U)

+∞ otherwise in L1(Ω),
(2.30)

with c1 and c3 as in (2.1) and (2.2), respectively. Appealing to [5, Theorem 4] and also noticing that
the Lp-convergence in the statement can be equivalently replaced by the convergence in Definition 2.2,
we deduce that Ek(·,U) Γ-converges to E(·,U) for every U ∈ A(Ω), where

E(u,U) =

∫
U

f̂ (∇u) dx +

∫
S u∩U

ĝ(ν) dHn−1

with f̂ and ĝ as in [5, Theorem 4] formulas (40) and (41), respectively. Moreover f̂ and ĝ satisfy

c̃1|ξ|
p ≤ f̂ (ξ) for every ξ ∈ Rn and c̃3 ≤ ĝ(ν) for every ν ∈ Sn−1,

for some c̃1, c̃3 > 0. Then, since Ek ≤ Fk, we may deduce that for every u ∈ S BV p(Ω) and every
U ∈ A(Ω) we have

E(u,U) ≤ F (u,U). (2.31)

We recall that for every u ∈ S BV p(Ω) and every U ∈ A(Ω) we also have

F (u,U) ≤ G(u,U), (2.32)

where G is as in (2.26).
Now let σ > 0 and for every u ∈ S BV p(Ω) and U ∈ A(Ω) set

F σ(u,U) := F (u,U) + σ

∫
S u∩U
|[u]| dHn−1.

For every fixed σ > 0 the functional F σ satisfies properties 1, 2, and 4 in Theorem 2.14. Moreover, in
view of (2.31)–(2.32) it holds

c̃1

∫
U
|∇u|p dx +

∫
S u∩U

(c̃3 + σ|[u]|) dHn−1 ≤ F σ(u,U)

≤ c2

∫
U

(1 + |∇u|p) dx +

∫
S u∩U

(c4 + σ|[u]|) dHn−1

Therefore, we can invoke the integral representation result [7, Theorem 1] to deduce that for every
u ∈ S BV p(Ω) and every U ∈ A(Ω) we have

F σ(u,U) =

∫
U

f σ∞(x,∇u) dx +

∫
S u∩U

gσ∞(x, [u], νu) dHn−1,

where f σ∞ and gσ∞ are given by the following derivation formulas

f σ∞(x, ξ) := lim sup
ρ→0+

1
ρn inf

{
F σ(u,Qρ(x)) : u ∈ S BV p(Qρ(x)), u = uξ near ∂Qρ(x)

}
(2.33)
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and

gσ∞(x, t, ν) := lim sup
ρ→0+

1
ρn−1 inf

{
F σ(u,Qν

ρ(x)) : u ∈ S BV p(Qν
ρ(x)), u = ut,ν

x near ∂Qν
ρ(x)

}
. (2.34)

By (2.33) and (2.34) the sequences ( f σ∞)σ>0 and (gσ∞)σ>0 are decreasing as σ decreases, therefore by
setting f∞ := limσ→0+ f σ∞ and g∞ := limσ→0+ gσ∞, by the pointwise convergence of (F σ)σ>0 to F and the
Monotone Convergence Theorem, we get

F (u,U) =

∫
U

f∞(x,∇u) dx +

∫
S u∩U

g∞(x, [u], νu) dHn−1,

for every u ∈ S BV p(Ω) and U ∈ A(Ω). Eventually, a standard truncation and continuity argument
allows to extend this integral representation to the whole space GS BV p(Ω) and thus to get exactly
(2.27).

The measurability properties of f∞ and g∞ follow from the derivation formulas (2.33) and (2.34),
arguing as in the appendix of [12]. The convexity of f∞ in ξ, the subadditivity of g∞ in t, and the
convexity in ν of its 1-homogeneous extension are immediate consequences of the L1(Ω)-lower
semicontinuity of F .

To show that f∞ and g∞ satisfy, respectively, the lower bounds as in ii) and vi) we argue as follows.
Set

Φσ(u,U) :=

c̃1

∫
U
|∇u|p dx +

∫
S u∩U

(c̃3 + σ|[u]|) dHn−1 if u ∈ S BV p(U)

+∞ otherwise in L1(Ω),

and for every x ∈ Rn and ξ ∈ Rn define

φσ(x, ξ) := lim sup
ρ→0+

1
ρn inf

{
Φσ(u,Qρ(x)) : u ∈ S BV p(Qρ(x)), u = uξ near ∂Qρ(x)

}
,

while for every x ∈ Rn, t ∈ R, and ν ∈ Sn−1 set

ψσ(x, t, ν) := lim sup
ρ→0+

1
ρn−1 inf

{
Φσ(u,Qν

ρ(x)) : u ∈ S BV p(Qν
ρ(x)), u = uν,tx near ∂Qν

ρ(x)
}
.

Since Φσ ≤ F σ on S BV p(Ω) we clearly have both φσ ≤ f σ∞ and ψσ ≤ gσ∞. We now show that
φσ(x, ξ) = c̃1|ξ|

p for every x ∈ Rn and every ξ ∈ Rn and ψσ(x, t, ν) = c̃3 +σt. To do so we notice that by
the homogeneity in x of Φσ, we have both φσ(x, ξ) = φσ(0, ξ) for every x ∈ Rn and every ξ ∈ Rn and
ψσ(x, t, ν) = ψσ(0, t, ν). We can now apply the integral representation result [7, Theorem 1] to Φσ so
that choosing u = uξ and U = Q we obtain

c̃1|ξ|
p = Φσ(uξ,Q) =

∫
Q
φσ(y, ξ) dy = φσ(0, ξ) = φσ(x, ξ),

while choosing u = ut,ν
0 and U = Qν we obtain

c̃3 + σt = Φσ(ut,ν
0 ,Q

ν) =

∫
Πν∩Qν

ψσ(y, t, ν) dHn−1 = ψσ(0, t, ν) = ψσ(x, t, ν),
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and hence the desired equalities. Therefore we deduce

c̃1|ξ|
p = φσ(x, ξ) ≤ f σ∞(x, ξ) for every x, ξ ∈ Rn

which immediately gives the lower bound of f∞; moreover there holds

c̃3 ≤ c̃3 + σt = ψσ(x, t, ν) ≤ gσ∞(x, t, ν) for every x ∈ Rn, t ∈ R, ν ∈ Sn−1

hence, taking the inf on σ > 0 yields the the lower bound on g∞.
The upper bound in ii) immediately follows from (2.33) and the obvious inquality F σ(uξ,Qρ(x)) ≤

ρnc2(1 + |ξ|p), while the upper bound in vi) follows from (2.34) and

F (ut,ν
x ,Q

ν
ρ(x)) ≤ F σ(ut,ν

x ,Q
ν
ρ(x)) ≤ ρn−1(c4 + σt),

which holds true for every σ > 0 and hence also in the limit as σ→ 0+.
Finally, the monotonicity in t and the symmetry of g∞ easily follow from (2.34). �

Theorem 2.16 (Γ-convergence). Let Fk be the functionals defined in (2.3). Then, there exists a
subsequence k j → +∞ such that (Fk j) Γ-converges to the functional F given by (2.27), for some
Carathéodory function f∞ : Rn × Rn → [0,+∞) and some Borel function g∞ : Rn × Sn−1 → (0,+∞)
satisfying properties (i) − (vi) as in Theorem 2.15.

Proof. The proof is an immediate consequence of Theorem 2.14 and Theorem 2.15. �

Corollary 2.17 (Γ-convergence of porous brittle materials). Let αk = βk = 0 and let Fk be the
corresponding functionals given by (2.3). Then, there exists a subsequence k j → +∞ such that (Fk j)
Γ-converges with respect to the L1(Ω)-convergence to the functional F given by (2.27), for some
Carathéodory function f∞ : Rn × Rn → [0,+∞) and some Borel function g∞ : Rn × Sn−1 → (0,+∞)
satisfying properties (i) − (vi) as in Theorem 2.15.

Proof. Since the L1(Ω)-convergence implies the convergence in Definition 2.2, the proof of the liminf
inequality is immediate from Theorem 2.16. Now let u ∈ GS BV p(Ω), then by Theorem 2.16 there
exists (u j) ⊂ L1(Ω) such that u j { u and lim j Fk j(u j) = F (u). In view of Definition 2.2 this means that
there exists a sequence (ũ j) ⊂ L1(Ω) such that ũ j = u j a.e. in Ωk j and ũ j → u in L1(Ω). Then, since the
choice αk j = βk j = 0 implies the equality Fk j(ũ j) = Fk j(u j), the sequence (ũ j) is the desired recovery
sequence. �

2.4. Convergence of minimisation problems

On account of the Γ-convergence result Theorem 2.14 in this section we establish a convergence
result for minimisation problems associated to a suitable perturbation of the functionals Fk. To this
end, let h ∈ L∞(Ω) and for every k set

Mk := inf
{
Fk(u) + ‖u − h‖p

Lp(Ωk) : u ∈ L1(Ω)
}
.

By a standard truncation argument it is immediate to show that

Mk = inf
{
Fk(u) + ‖u − h‖p

Lp(Ωk) : u ∈ S BV p(Ω), ‖u‖L∞(Ω) ≤ ‖h‖L∞(Ω)
}
. (2.35)
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Proposition 2.18. Let F = Γ- lim j Fk j and let (u j) ⊂ S BV p(Ω) be such that

lim
j→+∞

(
Fk j(u j) + ‖u j − h‖p

Lp(Ωk j )
− M j

)
= 0. (2.36)

Then, up to subsequences (not relabelled), u j converges in the sense of Definition 2.2 to a function
ū ∈ S BV p(Ω) ∩ L∞(Ω) which solves

M := min
{
F (u) + C(K)‖u − h‖p

Lp(Ω) : u ∈ S BV p(Ω), ‖u‖L∞(Ω) ≤ ‖h‖L∞(Ω)
}
,

where C(K) := Ln(Q \ K). Moreover it holds M j → M, as j→ +∞.

Proof. Let (u j) ⊂ S BV p(Ω) be as in (2.36). Then, in view of (2.35), (H1), and (H3) we have

sup
j

(
‖u j‖L∞(Ω) +

∫
Ωk j

|∇u j|
p dx +Hn−1(S u j ∩Ωk j)

)
< +∞.

Therefore Theorem 2.1 yields the existence of a function ū ∈ S BV p(Ω) ∩ L∞(Ω) and of a sequence
(ũ j) ⊂ S BV p(Ω) with ũ j = u j a.e. in Ωk j such that (up to subsequences) ũ j → ū in Lp(Ω), moreover
‖ū‖L∞(Ω) ≤ ‖h‖L∞(Ω). We have

C(K)‖ū − h‖p
Lp(Ω) = lim

j→+∞
‖(ũ j − h)χΩk j

‖
p
Lp(Ω) = lim

j→+∞
‖u j − h‖p

Lp(Ωk j )
,

thus by Theorem 2.14 we get

F (ū) + C(K)‖ū − h‖p
Lp(Ω) ≤ lim inf

j→+∞

(
Fk j(u j) + ‖u j − h‖p

Lp(Ωk j )

)
.

Therefore, by definition of u j we obtain

F (ū) + C(K)‖ū − h‖p
Lp(Ω) ≤ lim inf

j→+∞
M j. (2.37)

Now let w ∈ S BV p(Ω)∩L∞(Ω) be an arbitrary function such that ‖w‖L∞(Ω) ≤ ‖h‖L∞(Ω). Again appealing
to Theorem 2.14 we can find (w j) ⊂ L1(Ω) such that w j { w and lim j F j(w j) = F (w). Now let w̃ j be
as in Definition 2.2, let m := ‖h‖L∞(Ω) and denote with (w̃m

j ) the sequence of truncated functions of (w̃ j)
at level m. We clearly have w̃m

j = wm
j a.e. in Ωk j and w̃m

j → w in Lp(Ω). Hence

lim
j→+∞

‖wm
j − h‖p

Lp(Ωk j )
= lim

j→+∞
‖(w̃m

j − h)χΩk j
‖

p
Lp(Ω) = C(K)‖w − h‖p

Lp(Ω).

Moreover, since lim sup j F j(wm
j ) ≤ F (w), we immediately deduce

lim sup
j→+∞

M j ≤ F (w) + C(K)‖w − h‖p
Lp(Ω). (2.38)

Finally, by gathering (2.37) and (2.38) we obtain

F (ū) + C(K)‖ū − h‖p
Lp(Ω) ≤ lim inf

j→+∞
M j ≤ lim sup

j→+∞

M j

≤ F (w) + C(K)‖w − h‖p
Lp(Ω),

hence by the arbitrariness of w we deduce that ū is a minimiser for F +C(K)‖ ·−h‖p
Lp(Ω). Finally, taking

w = ū also implies M j → M. Since moreover this limit does not depend on the subsequence, the
convergence holds true for the whole (M j). �
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3. Part II: Examples

In this section we restrict the analysis to the case of εk-periodic integrands fk and gk. That is, we
consider the functionals F αk ,βk

k : L1(Ω) −→ [0,+∞] defined as

F
αk ,βk

k (u) :=



∫
Ωk

f
( x
εk
,∇u

)
dx + αk

∫
Ω\Ωk

f
( x
εk
,∇u

)
dx

+

∫
S u∩Ωk

g
( x
εk
, νu

)
dHn−1 + βk

∫
S u∩(Ω\Ωk)

g
( x
εk
, νu

)
dHn−1

if u ∈ S BV p(Ω)

+∞ otherwise,

(3.1)

where f and g are Q-periodic in the first variable and satisfy (H1)–(H2) and (H3)–(H4), respectively.
With the help of some specific examples, which correspond to some specific choices of f , g, and

Ωk, we show that the Γ-limit of F αk ,βk
k is highly sensitive both to the choice of the coefficients αk, βk and

to the asymptotic behaviour of αk, βk compared to the period of the microstructure εk. The examples
we are going to discuss are taken from Barchiesi and Focardi [5] (see also Cagnetti and Scardia [14]
and Focardi, Gelli and Ponsiglione [17]), from Barchiesi, Lazzaroni and Zeppieri [6], and from Pellet,
Scardia and Zeppieri [19]. For the corresponding proofs we refer the reader to the aforementioned
papers.

3.1. Periodic brittle porous materials

In this subsection we consider the limit case αk = βk = 0; i.e., we consider the functionals

F
0,0

k (u) :=



∫
Ωk

f
( x
εk
,∇u

)
dx +

∫
S u∩Ωk

g
( x
εk
, νu

)
dHn−1 if u ∈ S BV p(Ω),

+∞ otherwise in L1(Ω).

(3.2)

Loosely speaking, in this case the soft or weak inclusions in the material are replaced by perforations
[5, 14, 17].

Theorem 3.1 (Homogenisation of periodic porous brittle materials). Let F 0,0
k be the functionals as in

(3.2). Then (F 0,0
k ) Γ-converges both with respect to the convergence in Definition 2.2 and with respect

to the L1(Ω)-convergence to the functional F 0 which is finite on GS BV p(Ω) and given by

F 0(u) =

∫
Ω

f 0(∇u) dx +

∫
S u

g0(νu) dHn−1, (3.3)

where f 0 and g0 are, respectively, given by the following homogenisation formulas

f 0(ξ) = inf
{∫

Q∩E
f (y,∇u) dx : u ∈ W1,p(Q ∩ E), u = uξ near ∂Q

}
, (3.4)
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for every ξ ∈ Rn, whereas

g0(ν) = lim
T→+∞

1
T n−1 inf

{ ∫
S u∩T Qν∩E

g(y, νu) dHn−1 : u ∈ P(T Qν ∩ E), u = uν,10 near ∂T Qν
}
, (3.5)

for every ν ∈ Sn−1.

Proof. Theorem 2.16 and Corollary 2.17 yield the existence of a subsequence k j → +∞ such that
the corresponding functionals F 0,0

k j
Γ-converge to F as in (2.27), both with respect to the convergence

in Definition 2.2 and to the L1(Ω)-convergence. Then, the homogenisation formulas (3.4) and (3.5)
together with the identity F = F 0 follow from [5, Theorem 4]. Finally, since (3.4) and (3.5) are
subsequence-independent, invoking the Urysohn property [15, Proposition 8.3] readily implies the Γ-
convergence of the whole sequence (F 0,0

k ) to F 0. �

The following result is an immediate consequence of Theorem 3.1 and of an adaptation of the
Cagnetti and Scardia extension result [14, Theorem 1.3] to the case of a general exponent p > 1.

Corollary 3.2. Let αk, βk → 0 and let F αk ,βk
k be the corresponding functionals as in (2.3). Then, the

sequence (F αk ,βk
k ) Γ-converges to the functional F 0 given by (3.3).

Proof. By Theorem 2.16 (up to subsequences not relabelled) the functionals F αk ,βk
k Γ-converge to F .

Since F 0,0
k ≤ F

αk ,βk
k by Theorem 3.1 we immediately get F 0 ≤ F .

We now prove the converse inequality. To this end let u ∈ S BV p(Ω) ∩ L∞(Ω) and let
(uk) ⊂ S BV p(Ωk) be a recovery sequence for F 0,0

k . That is uk { u and limk F
0,0

k (uk) = F (u). Since the
functionals F 0,0

k decrease by truncation it is not restrictive to assume that ‖uk‖L∞(Ω) ≤ ‖u‖L∞(Ω). Starting
from (uk) we now want to construct a sequence (vk) which both satisfies vk → u in L1(Ω) and
limk F

αk ,βk
k (vk) = F 0(u). To this end, we start noticing that the bounds (2.1) and (2.2) readily imply

sup
k

( ∫
Ωk

|∇uk|
p dx +Hn−1(S uk ∩Ωk)

)
< +∞. (3.6)

For every fixed k let vk := T kuk ∈ S BV p(Ω) be the extended function of uk to Ω whose existence is
given by [14, Theorem 1.3]; i.e., vk is such that vk = uk a.e. in Ωk, ‖uk‖L∞(Ω) ≤ ‖u‖L∞(Ω), and∫

Ω

|∇vk|
p dx +Hn−1(S vk ∩Ω) ≤ C

( ∫
Ωk

|∇uk|
p dx +Hn−1(S uk ∩Ωk)

)
(3.7)

for some C > 0 independent of k. By definition of vk, also invoking the Ambrosio compactness
Theorem, it is immediate to check that vk → u in L1(Ω).

By (3.7) we get that

αk

∫
Ω\Ωk

|∇vk|
p dx + βkH

n−1(S vk ∩ (Ω \Ωk)) ≤ αk

∫
Ω

|∇vk|
p dx + αkH

n−1(S vk ∩Ω)

≤ C max{αk, βk}
( ∫

Ωk

|∇uk|
p dx +Hn−1(S uk ∩Ωk)

)
, (3.8)

where (3.8) is infinitesimal thanks to (3.6), since max{αk, βk} → 0 as k → +∞. Thus eventually

lim
k→+∞

F
αk ,βk

k (vk) = lim
k→+∞

F
0,0

k (uk) = F 0(u),
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hence (vk) is the desired sequence. Therefore, by the Γ-convergence of F αk ,βk
k to F we can deduce that

for every u ∈ S BV p(Ω) ∩ L∞(Ω) it holds F (u) ≤ F 0(u).
Now let u ∈ GS BV p(Ω) and denote with um its truncated function at level m > 0. We clearly have

F (um) ≤ F 0(um) ≤ F 0(u), hence the desired inequality follows by the L1(Ω) convergence um to u and
by the lower semicontinuity of F . �

The following remarks are in order.

Remark 3.3. In view of Remark 2.10, both in Theorem 3.1 and in Corollary 3.2 assumption (H2) on f
can be dropped.

Remark 3.4 (On f 0). The homogenised volume energy density f 0 given by (3.4) is the same as that
obtained by Acerbi, Chiadó-Piat, Dal Maso and Percivale [1] in the case of elastic perforated materials.
Moreover, it is easy to check that if f is p-homogeneous then the corresponding f 0 given by (3.4) is
also p-homogeneous.

Remark 3.5 (Energy decoupling). In spite of the strong degeneracy of the integrands in (3.2) (resp.
in (3.1)), which in this case are identically equal to zero (resp. both infinitesimal) in the εk-periodic
set Ω \ Ωk, Theorem 3.1 (resp. Corollary 3.2) shows that the functionals F 0,0

k (resp. F αk ,βk
k ) exhibit

a limit behaviour which is qualitatively similar to that of free-discontinuity functionals with coercive
integrands [9, 13, 18]. Namely, in the homogenised limit there is no interaction between bulk and
surface term. As a consequence the homogenised surface energy density g0 does not depend on t, and
therefore the Γ-limit is of brittle type.

3.2. Periodic brittle high-contrast materials

In this section we show that if only one of the coefficients αk and βk is infinitesimal (while the
other stays uniformly bounded from below), then the asymptotic behaviour of the functionals F αk ,βk

k

can be very different from that of F 0,0
k (or of F αk→0,βk→0

k ). In particular, we show that in this case a
volume-surface energy coupling cannot be excluded in general. To do so we exhibit coefficients αk, βk,
integrands f , g and a geometry for the periodic set E which give rise to the desired limit coupling. This
is done by resorting to the analysis of Barchiesi, Lazzaroni and Zeppieri [6] and Pellet, Scardia and
Zeppieri [19], which is briefly reviewed in Subsection 3.2.1 and Subsection 3.2.2, respectively.

The functionals analysed in [6] and [19] are both of Mumford-Shah type and can be written in the
form

MS
αk ,βk
k (u) =

∫
Ω

ak

( x
εk

)
|∇u|2 dx +

∫
S u

bk

( x
εk

)
dHn−1, u ∈ S BV2(Ω) (3.9)

where ak, bk : Rn → [0, 1] are Q-periodic functions and in the periodicity cell Q are defined as

ak(y) =

αk if y ∈ Qr

1 if y ∈ Q \ Qr

bk(y) =

βk if y ∈ Qr

1 if y ∈ Q \ Qr

(3.10)

with r ∈ (0, 1). From (3.9)–(3.10) we infer that in this case f = f (ξ) = |ξ|2, g ≡ 1, and Ωk = Ω ∩ εkE
with E = Rn \

⋃
i∈Zn(Qr + i).

Remark 3.6 (Mumford-Shah functional in perforated domains). The choice αk = βk = 0 corresponds
to the Mumford-Shah functionals in perforated domain. The functionalMS0,0

k is a special instance of
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(3.2) and its homogenised limit is treated in [14, 17] for general sets E. In this case the homogenised
integrands (3.4) and (3.5) reduce, respectively, to

f 0(ξ) = inf
{∫

Q\Qr

|∇u|2 dx : u ∈ W1,2(Q \ Qr), u = uξ near ∂Q
}
, (3.11)

for every ξ ∈ Rn, and to

g0(ν) = lim
T→+∞

1
T n−1 inf

{
Hn−1(S u ∩ T Qν ∩ E) : u ∈ P(T Qν ∩ E), u = uν,10 near ∂T Qν

}
, (3.12)

for every ν ∈ Sn−1. From (3.11) and (3.12) it is easy to check that f 0(ξ) = A0ξ · ξ, for some A0 ∈ Rn×n

which satisfies c̃1I ≤ A0 ≤ I, in the sense of quadratic forms (cf. (2.29)). Hence, f 0 is a positive
quadratic form. Moreover, it holds g0(ei) = 1 − rn−1, for every i = 1, . . . , n.

3.2.1. Soft inclusions

We consider the case αk → 0 and βk = 1 which models the situation where the periodic set Ω \ Ωk

is occupied by a brittle material with a very small elastic modulus. For this reason, we refer to the set
Ω \Ωk as the set of soft inclusions. With this choice the functionals in (3.9) become

MS
αk ,1
k (u) =

∫
Ωk

|∇u|2 dx + αk

∫
Ω\Ωk

|∇u|2 dx +Hn−1(S u), u ∈ S BV2(Ω). (3.13)

In [6] Barchiesi, Lazzaroni and Zeppieri showed that the asymptotic behaviour of MSαk ,1
k heavily

depends on the mutual vanishing rate of αk and εk; that is, it depends on the parameter

` := lim
k→+∞

αk

εk
∈ [0,+∞]. (3.14)

For the proof of Theorem 3.7 below we refer the reader to [6, Theorems 1, 4, and Remark 6].

Theorem 3.7 (Homogenisation of periodic brittle materials with soft inclusions). Let MSαk ,1
k be the

functionals defined in (3.13) and let ` ∈ [0,+∞] be as in (3.14). Then, up to subsequences not
relabelled, (MSαk ,1

k ) Γ-converges to the functional F ` which is finite on GS BV2(Ω) and given by

F `(u) =

∫
Ω

f 0(∇u) dx +

∫
S u

g`([u], νu) dHn−1, (3.15)

where f 0 is as in (3.11) and for every t ∈ R, ν ∈ Sn−1

g`(t, ν) =

g0(ν) if ` = 0
1 if ` = +∞.

Moreover for every ` ∈ (0,+∞) it holds

min
{
g0(ei) + c`t2, 1

}
≤ g`(t, ei) ≤ min

{
g0(ei) + ĉ`t, 1

}
(3.16)

for every t > 0, i = 1, . . . , n, and for some c`, ĉ` > 0, with lim`→0+ c` = lim`→0+ ĉ` = 0.
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Remark 3.8. The following remarks are in order.

(i) As far as the homogenised volume energy is concerned, the soft inclusions are (energetically)
equivalent to the perforations in the material.

(ii) For ` = 0, which corresponds to αk � εk, the functionals MSαk ,1
k are equivalent to the

functionalsMS0,0
k , in the sense of Γ-convergence.

(iii) For ` ∈ (0,+∞) the bounds in (3.16) imply that, along the coordinate directions, g` depends on
t. Moreover it becomes constant (and equal to 1) above a certain threshold t0 > 0; i.e., g` is of cohesive
type. Being the microscopic energiesMSαk ,1

k of brittle type, the cohesive behaviour of g` can only be
explained as the result of a non trivial bulk-surface coupling by homogenisation. This interaction is
particularly apparent from the upper-bound construction in [6] which we briefly illustrate here in the
case n = 2.

For i = 1, 2 we have g`(t, ei) = F `(uei,t
0 ,Q), moreover it is immediate to check that g`(t, e1) =

g`(t, e2). Clearly g`(t, e2) ≤ 1 for every t > 0. Then, to get the upper bound in (3.16) it suffices to show
that g`(t, e2) ≤ g0(e2) + ĉ`t for some ĉ` > 0. Let R ⊂ Q ⊂ R2 be the open rectangle defined as

R := (− r
2 ,

r
2 ) × (− τ2 ,

τ
2 ),

with τ ∈ (0, r) to be determined. Set

Rk := Q ∩
⋃
i∈Z

(
εkR + (iεk, 0)

)
and let (uk) ⊂ S BV2(Q) be the sequence of functions defined as

uk(x) :=


t if x ∈ Q \ Rk and x2 ≥ 0,
t
2 + t

τεk
xn if x ∈ Rk,

0 if x ∈ Q \ Rk and x2 < 0,

(see Figure 2). We clearly have uk → ue2,t
0 in L1(Q); moreover

∫
Rk

|∇uk|
2 dx ≤

( 1
εk

+ 1
) t2

τ
and H1(S uk) ≤ εk

( 1
εk

+ 1
)(

1 − r + 2τ
)
,

therefore

g`(t, e2) = F `(ue2,t
0 ,Q) ≤ lim sup

k→+∞

MS
αk ,1
k (uk,Q). ≤ 1 − r + 2τ + `

t2

τ

Hence, by optimising on τ we get

g`(t, e2) ≤ 1 − r + 2
√

2` t (3.17)

thus the desired estimate follows with ĉ` = 2
√

2`, by recalling that g0(e2) = 1 − r.
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Figure 2. Construction of the recovery sequence in an εk-cell, across the interface x2 = 0.

uk = 1
linear interpolation

uk = t

εkr

εkτ

Loosely speaking, the construction as above shows that, the cost of an elastic deformation of the
soft inclusions is of the same order of the energy spent to create a microscopic crack. Since the
former depends linearly on t (while the latter is constant in t) for small values of t, to approximate a
macroscopic crack it can be convenient to combine microscopic deformations of the soft inclusions
(with high gradients) and microscopic jumps.

(iv) Even if not immediately apparent from the homogenisation formulas, a volume-surface
interaction takes place for ` = 0, as well. Indeed, in this case g` = g0 whereas inMSαk ,1

k the surface
energy density is identically equal to one. In this case in fact, the cost of an elastic deformation of the
soft inclusions is negligible (cf. (3.17) for ` = 0) so that to approximate a macroscopic crack it is
never convenient to introduce microscopic cracks inside the soft material. On the contrary, in the
regime ` = +∞, which corresponds to αk � εk, there is a complete volume-surface decoupling, as in
the coercive case.

3.2.2. Weak inclusions

We consider the case αk = 1 and αk → 0 which models the situation where the periodic set Ω \ Ωk

is occupied by a brittle material with a very small fracture resistance. For this reason, we refer to the
set Ω \Ωk as the set of weak inclusions. With this choice the functionals in (3.9) become

MS
1,βk
k (u) =

∫
Ω

|∇u|2 dx +Hn−1(S u ∩Ωk) + βkH
n−1(S u ∩ (Ω \Ωk)), u ∈ S BV2(Ω). (3.18)

In [19] Pellet, Scardia and Zeppieri showed that the asymptotic behaviour ofMS1,βk
k heavily depends

on the mutual vanishing rate of βk and εk, that is on the parameter

`′ := lim
k

βk

εk
∈ [0,+∞]. (3.19)

For the proof of Theorem 3.9 below we refer the reader to [19].
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Theorem 3.9 (Homogenisation of periodic brittle materials with weak inclusions). LetMS1,βk
k be the

functionals defined in (3.18) and let `′ ∈ [0,+∞] be as in (3.19). Then, up to subsequences not
relabelled, (MS1,βk

k ) Γ-converges to the functional F `′ which is finite on GS BV2(Ω) and given by

F `′(u) =

∫
Ω

f `
′

(∇u) dx +

∫
S u

g0(νu) dHn−1, (3.20)

where g0 is as in (3.12) and for every ξ ∈ Rn

f `
′

(ξ) =

 f 0(ξ) if `′ = 0
|ξ|2 if `′ = +∞.

Moreover for every `′ ∈ (0,+∞) it holds

f 0(ξ) ≤ f `
′

(ξ) ≤ min
{
|ξ|2, f 0(ξ) + C`′

}
(3.21)

for every ξ ∈ Rn and for some C > 0.

Remark 3.10. The following remarks are in order.
(i) As far as the homogenised surface energy is concerned, the weak inclusions are (energetically)

equivalent to the perforations in the material.
(ii) For `′ = 0, which corresponds to βk � εk, the functionals MS1,βk

k are equivalent to the
functionals MS0,0

k , in the sense of Γ-convergence. Indeed, “removing the weak inclusions from the
material” has an infinitesimal cost of order βk/εk given by the perimeter of the weak inclusions
(proportional to βkε

n−1
k ) multiplied by ε−n

k (the number of εk-cells contained in Ω). In this case a
volume-surface energy coupling takes place since the elastic energy can be lowered by introducing
cracks in the materials.

(iii) For `′ ∈ (0,+∞) the bounds in (3.21) hold true (see [19, Lemma 6.1]). The bound from below
is immediate and it is a consequence of the trivial bound MS0,0

k ≤ MS
1,βk
k . The bound from above

shows that for large deformations; i.e., for large |ξ|, to approximate a macroscopic elastic deformation
is energetically favourable to mix elastic deformations and jumps in the weak inclusions. Moreover,
(3.21) implies that for |ξ| large it holds f `

′

(ξ) < |ξ|2. The latter shows that a stiffness degradation occurs
in the homogenised limit, and that the macroscopic energy F `′ describes a damaged material (the same
being true for ` = 0).

(iv) The bounds in (3.21) combined with an easy scaling argument show that in the regime
`′ ∈ (0,+∞) the homogenised volume energy density f `

′

is not 2-homogeneous. Indeed, assume by
contradiction that this is not the case and let λ , 0. Taking into account that f 0 is 2-homogeneous (see
Remark 3.4), we can replace in (3.21) ξ with λξ and divide by λ2 to get

f 0(ξ) ≤ f `
′

(ξ) ≤ min
{
|ξ|2, f 0(ξ) +

C`′

λ2

}
.

Therefore by letting |λ| → +∞ we get f `
′

≡ f 0 which leads to a contradiction in view
of [19, Proposition 6.10].

(v) In the regime `′ = +∞, which corresponds to βk � εk, there is a complete volume-surface
decoupling, as in the coercive case. Loosely speaking, in this case the fracture resistance of the weak
inclusions is not small enough to make cracks energetically more convenient than (or at least
comparable to) elastic deformations.
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1. Acerbi E, Chiadó Piat V, Dal Maso G, et al. (1992) An extension theorem from connected sets,
and homogenization in general periodic domains. Nonlinear Anal Theor 18: 481–496.

2. Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variations and Free Discontinuity
Problems. Oxford: Clarendon Press.

3. Barchiesi M (2018) Toughening by crack deflection in the homogenization of brittle composites
with soft inclusions. Arch Ration Mech Anal 227: 749–766.

4. Barchiesi M, Dal Maso G (2009) Homogenization of fiber reinforced brittle materials: The
extremal cases. SIAM J Math Anal 41: 1874–1889.

5. Barchiesi M, Focardi M (2011) Homogenization of the Neumann problem in perforated domains:
An alternative approach. Calc Var Partial Dif 42: 257–288.

6. Barchiesi M, Lazzaroni G, Zeppieri CI (2016) A bridging mechanism in the homogenization of
brittle composites with soft inclusions. SIAM J Math Anal 48: 1178–1209.
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