Research article Special Issues

Instabilities via negative Krein signature in a weakly non-Hamiltonian DNLS model

  • Received: 18 January 2019 Accepted: 27 March 2019 Published: 26 April 2019
  • In the present work we consider a model that has been proposed at the continuum level for self-defocusing nonlinearities in atomic Bose-Einstein condensates (BECs) in order to capture phenomenologically the loss of condensate atoms to thermal ones. We explore a model combining dispersion, nonlinearity and gain/loss at the discrete level, and illustrate the idea that modes associated with negative "energy" (mathematically: negative Krein signature) can give rise to instability of excited states when non-Hamiltonian terms are introduced in a nonlinear dynamical lattice. We showcase this idea by considering one-, two- and three-site discrete modes, exploring their stability via analytical approximations, and corroborating their continuation numerically over the relevant parameter controlling the strength of the weakly non-Hamiltonian term. We also manifest through direct numerical simulations their unstable nonlinear dynamics.

    Citation: Panayotis G. Kevrekidis. Instabilities via negative Krein signature in a weakly non-Hamiltonian DNLS model[J]. Mathematics in Engineering, 2019, 1(2): 378-390. doi: 10.3934/mine.2019.2.378

    Related Papers:

  • In the present work we consider a model that has been proposed at the continuum level for self-defocusing nonlinearities in atomic Bose-Einstein condensates (BECs) in order to capture phenomenologically the loss of condensate atoms to thermal ones. We explore a model combining dispersion, nonlinearity and gain/loss at the discrete level, and illustrate the idea that modes associated with negative "energy" (mathematically: negative Krein signature) can give rise to instability of excited states when non-Hamiltonian terms are introduced in a nonlinear dynamical lattice. We showcase this idea by considering one-, two- and three-site discrete modes, exploring their stability via analytical approximations, and corroborating their continuation numerically over the relevant parameter controlling the strength of the weakly non-Hamiltonian term. We also manifest through direct numerical simulations their unstable nonlinear dynamics.


    加载中


    [1] Kevrekidis PG (2009) The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computation and Physical Perspectives, Heidelberg: Springer-Verlag.
    [2] Christodoulides DN, Lederer F, Silberberg Y, Christodoulides DN (2003) Discretizing light behavior in linear and nonlinear waveguide lattices. Nature 424: 817–823. doi: 10.1038/nature01936
    [3] Sukhorukov AA, Kivshar YS, Eisenberg HS, et al. (2003) Spatial optical solitons in waveguide arrays. IEEE J Quantum Elect 39: 31–50. doi: 10.1109/JQE.2002.806184
    [4] Lederer F, Stegeman GI, Christodoulides DN, et al. (2008) Discrete solitons in optics. Phys Rep 463: 1–126. doi: 10.1016/j.physrep.2008.04.004
    [5] Morsch O, Oberthaler M (2006) Dynamics of Bose-Einstein condensates in optical lattices. Rev Mod Phys 78: 179–215. doi: 10.1103/RevModPhys.78.179
    [6] Eisenberg HS, Silberberg Y, Morandotti R, et al. (1998) Discrete spatial optical solitons in waveguide arrays. Phys Rev Lett 81: 3383–3386. doi: 10.1103/PhysRevLett.81.3383
    [7] Eisenberg HS, Silberberg Y, Morandotti R, et al. (2000) Diffraction management. Phys Rev Lett 85: 1863–1866. doi: 10.1103/PhysRevLett.85.1863
    [8] Morandotti R, Peschel U, Aitchison JS, et al. (1999) Dynamics of discrete solitons in optical waveguide arrays. Phys Rev Lett 83: 2726–2729. doi: 10.1103/PhysRevLett.83.2726
    [9] Morandotti R, Eisenberg HS, Silberberg Y, et al. (2001) Self-focusing and defocusing in waveguide arrays. Phys Rev Lett 86: 3296–3299. doi: 10.1103/PhysRevLett.86.3296
    [10] Neshev DN, Alexander TJ, Ostrovskaya EA, et al. (2004) Observation of discrete vortex solitons in optical induced photonic lattices. Phys Rev Lett 92: 123903. doi: 10.1103/PhysRevLett.92.123903
    [11] Fleischer JW, Bartal G, Cohen O, et al. (2004) Observation of vortex-ring "discrete" solitons in 2D photonic lattices. Phys Rev Lett 92: 123904. doi: 10.1103/PhysRevLett.92.123904
    [12] Iwanow R, May-Arrioja DA, Christodoulides DN, et al. (2005) Discrete Talbot effect in waveguide arrays. Phys Rev Lett 95: 053902. doi: 10.1103/PhysRevLett.95.053902
    [13] Rüter CE, Makris KG, El-Ganainy R, et al. (2010) Observation of parity-time symmetry in optics. Nat Phys 6: 192–195. doi: 10.1038/nphys1515
    [14] Pitaevskii LP, Stringari S (2003) Bose-Einstein Condensation, Oxford: Oxford University Press.
    [15] Kevrekidis PG, Frantzeskakis DJ, Carretero-González R (2015) The Defocusing Nonlinear Schrödinger Equation, Philadelphia: SIAM.
    [16] Proukakis N, Gardiner S, Davis M, et al. (2013) Quantum gases: Finite Temperature and Nonequilibrium Dynamics, London: Imperial College Press.
    [17] Carr LD (2010) Understanding Quantum Phase Transitions, Boca Raton: CRC Press Taylor & Francis Group.
    [18] Pitaevskii LP (1959) Phenomenological theory of superfluidity near the λ point. Sov Phys JETP 35: 282–287.
    [19] Jackson B, Proukakis NP (2008) Finite temperature models of Bose-Einstein condensation. J Phys B: At Mol Opt Phys 41: 203002.
    [20] Cockburn SP, Nistazakis HE, Horikis TP, et al. (2010) Matter wave dark solitons: Stochastic versus analytical results. Phys Rev Lett 104: 174101. doi: 10.1103/PhysRevLett.104.174101
    [21] Cockburn SP, Proukakis NP (2009) The stochastic Gross-Pitaevskii and some applications. Laser Phys 19: 558–570. doi: 10.1134/S1054660X09040057
    [22] Kevrekidis PG, Frantzeskakis DJ (2011) Multiple dark solitons in Bose-Einstein condensates at finite temperatures. Discrete Contin Dyn Sys 4: 1199–1212.
    [23] Achilleos V, Yan D, Kevrekidis PG, et al. (2012) Dark-bright solitons in Bose-Einstein condensates at finite temperatures. New J Phys 14: 055006. doi: 10.1088/1367-2630/14/5/055006
    [24] Yan D, Carretero-González R, Frantzeskakis DJ, et al. (2014) Exploring vortex dynamics in the presence of dissipation: analytical and numerical results. Phys Rev A 89: 043613. doi: 10.1103/PhysRevA.89.043613
    [25] Moon G, Kwon WJ, Lee H, et al. (2015) Thermal friction on quantum vortices in a Bose-Einstein condensate. Phys Rev A 92: 051601. doi: 10.1103/PhysRevA.92.051601
    [26] Kevrekidis PG, Susanto H, Chen Z (2006) Higher-order-mode soliton structures in two- dimensional lattices with defocusing nonlinearity. Phys Rev E 74: 066606. doi: 10.1103/PhysRevE.74.066606
    [27] Pelinovsky DE, Kevrekidis PG, Frantzeskakis DJ (2005) Stability of discrete solitons in nonlinear Schrödinger lattices. Phys D 212: 1–19. doi: 10.1016/j.physd.2005.07.021
    [28] Kapitula T, Kevrekidis PG, Sandstede B (2004) Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Phys D 195: 263–282. doi: 10.1016/j.physd.2004.03.018
    [29] Aranson IS, Kramer L (2002) The world of the complex Ginzburg-Landau equation. Rev Mod Phys 74: 99–143. doi: 10.1103/RevModPhys.74.99
    [30] Efremidis NK, Christodoulides DN (2003) Discrete Ginzburg-Landau solitons. Phys Rev E 67: 026606. doi: 10.1103/PhysRevE.67.026606
    [31] Efremidis NK, Christodoulides DN, Hizanidis K (2007) Two-dimensional discrete Ginzburg- Landau solitons. Phys Rev A 76: 043839. doi: 10.1103/PhysRevA.76.043839
    [32] Karachalios NI, Nistazakis HE, Yannacopoulos AN (2007)Asymptotic behavior of solutions of complex discrete evolution equations: the discrete Ginzburg-Landau equation. Discrete Contin Dyn Sys-Ser A 19: 711–736.
    [33] Kiselev Al S, Kiselev An S, Rozanov NN (2008) Dissipative discrete spatial optical solitons in a system of coupled optical fibers with the Kerr and resonance nonlinearities. Opt Spectrosc 105: 547–556. doi: 10.1134/S0030400X08100093
    [34] MacKay RS, Aubry S (1994) Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7: 1623–1643. doi: 10.1088/0951-7715/7/6/006
    [35] Darmanyan S, Kobyakov A, Lederer F, et al. (1998) Stability of strongly localized excitations in discrete media with cubic nonlinearity. J Exp Theor Phys 86: 682–686. doi: 10.1134/1.558526
    [36] Achilleos V, Bishop AR, Diamantidis S, et al. (2016) Dynamical playground of a higher-order cubic Ginzburg-Landau equation: From orbital connections and limit cycles to invariant tori and the onset of chaos. Phys Rev E 94: 012210. doi: 10.1103/PhysRevE.94.012210
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4683) PDF downloads(1416) Cited by(1)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog