Research article Special Issues

Solitary waves in atomic chains and peridynamical media

  • Received: 23 September 2018 Accepted: 23 January 2019 Published: 07 March 2019
  • Peridynamics describes the nonlinear interactions in spatially extended Hamiltonian systems by nonlocal integro-di erential equations, which can be regarded as the natural generalization of lattice models. We prove the existence of solitary traveling waves for super-quadratic potentials by maximizing the potential energy subject to both a norm and a shape constraint. We also discuss the numerical computation of waves and study several asymptotic regimes.

    Citation: Michael Herrmann, Karsten Matthies. Solitary waves in atomic chains and peridynamical media[J]. Mathematics in Engineering, 2019, 1(2): 281-308. doi: 10.3934/mine.2019.2.281

    Related Papers:

  • Peridynamics describes the nonlinear interactions in spatially extended Hamiltonian systems by nonlocal integro-di erential equations, which can be regarded as the natural generalization of lattice models. We prove the existence of solitary traveling waves for super-quadratic potentials by maximizing the potential energy subject to both a norm and a shape constraint. We also discuss the numerical computation of waves and study several asymptotic regimes.


    加载中


    [1] Chen F (2013) Wandernde Wellen in FPU-Gittern. Masters thesis, Saarland University, Germany.
    [2] Chen F (2017) Traveling waves in two-dimensional FPU lattices. PhD thesis, University of Münster, Germany.
    [3] Chen F, Herrmann M (2018) KdV-like solitary waves in two-dimensional FPU-lattices. Discrete Contin Dyn Syst A 38: 2305–2332. doi: 10.3934/dcds.2018095
    [4] Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 54: 1811–1842. doi: 10.1016/j.jmps.2006.04.001
    [5] English JM, Pego RL (2005) On the solitary wave pulse in a chain of beads. Proc Amer Math Soc 133: 1763–1768. doi: 10.1090/S0002-9939-05-07851-2
    [6] Filip AM, Venakides S (1999) Existence and modulation of traveling waves in particle chains. Comm Pure Appl Math 52: 693–735. doi: 10.1002/(SICI)1097-0312(199906)52:6<693::AID-CPA2>3.0.CO;2-9
    [7] Friesecke G, Matthies K (2002) Atomic-scale localization of high-energy solitary waves on lattices. Phys D 171: 211–220.
    [8] Friesecke G, Mikikits-Leitner A (2015) Cnoidal waves on Fermi-Pasta-Ulam lattices. J Dyn Differ Equ 27: 627–652. doi: 10.1007/s10884-013-9343-0
    [9] Friesecke G, Pego RL (1999) Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit. Nonlinearity 12: 1601–1627.
    [10] Friesecke G, Pego RL (2002) Solitary waves on FPU lattices. II. Linear implies nonlinear stability. Nonlinearity 15: 1343–1359.
    [11] Friesecke G, Pego RL (2004) Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory. Nonlinearity 17: 207–227.
    [12] Friesecke G, Pego RL (2004) Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy. Nonlinearity 17: 229–251.
    [13] Friesecke G, Wattis JAD (1994) Existence theorem for solitary waves on lattices. Commun Math Phys 161: 391–418. doi: 10.1007/BF02099784
    [14] Gaison J, Moskow S, Wright JD, et al. (2014) Approximation of polyatomic FPU lattices by KdV equations. Multiscale Model Sim 12: 953–995. doi: 10.1137/130941638
    [15] Herrmann M (2010) Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains. Proc Math Roy Soc Edinb 140: 753–785. doi: 10.1017/S0308210509000146
    [16] Herrmann M (2011) Action minimizing fronts in general FPU-type chains. J Nonlinear Sci 21: 33–55. doi: 10.1007/s00332-010-9075-9
    [17] Herrmann M (2017) High-energy waves in superpolynomial FPU-type chains. J Nonlinear Sci 27: 213–240.
    [18] Herrmann M, Matthies K (2015) Asymptotic formulas for solitary waves in the high-energy limit of FPU-type chains. Nonlinearity 28: 2767–2789. doi: 10.1088/0951-7715/28/8/2767
    [19] Herrmann M, Matthies K (2017) Stability of High-Energy Solitary Waves in Fermi-Pasta-Ulam-Tsingou Chains. Trans Amer Math Soc, arXiv: 1709.00948.
    [20] Herrmann M, Matthies K (2017) Uniqueness of solitary waves in the high-energy limit of FPU type chains, In: Gurevich, P., Hell, J., Sandstede, B., et al. Editors, Patterns of Dynamics, Springer, Cham, 3–15.
    [21] Herrmann M, Matthies K, Schwetlick H, et al. (2013) Subsonic phase transition waves in bistable lattice models with small spinodal region. SIAM J Math Anal 45: 2625–2645. doi: 10.1137/120877878
    [22] Herrmann M, Mikikits-Leitner A (2016) KdV waves in atomic chains with nonlocal interactions. Discrete Contin Dyn Syst 36: 2047–2067.
    [23] Herrmann M, Rademacher JDM (2010) Heteroclinic travelling waves in convex FPU-type chains. SIAM J Math Anal 42: 1483–1504. doi: 10.1137/080743147
    [24] Hewer B (2013) Nichtlineare Wellen in nicht-lokalen atomaren Ketten. Bachelors thesis, Saarland University, Germany.
    [25] Hoffman A, Wayne CE (2008) Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice. Nonlinearity 21: 2911–2947. doi: 10.1088/0951-7715/21/12/011
    [26] Hoffman A,Wayne CE (2009) Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model. J Dyn Differ Equ 21: 343–351. doi: 10.1007/s10884-009-9134-9
    [27] Hoffman A, Wayne CE (2013) A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit, In: Mallet-Paret J., Wu J., Yi Y., et al. Editors, Infinite Dimensional Dynamical Systems, New York: Springer, 185–192.
    [28] Hoffman A, Wright JD (2017) Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio. Phys D 358: 33–59.
    [29] Iooss G, James G (2005) Localized waves in nonlinear oscillator chains. Chaos 15: 015113. doi: 10.1063/1.1836151
    [30] Iooss G, Kirchgässner K (2000) Travelling waves in a chain of coupled nonlinear oscillators. Commun Math Phys 211: 439–464. doi: 10.1007/s002200050821
    [31] James G (2012) Periodic travelling waves and compactons in granular chains. J Nonlinear Sci 22: 813–848. doi: 10.1007/s00332-012-9128-3
    [32] James G, Pelinovsky D (2014) Gaussian solitary waves and compactons in Fermi-Pasta-Ulam lattices with Hertzian potentials. Proc R Soc A 470: 20130462. doi: 10.1098/rspa.2013.0462
    [33] Mizumachi T (2009) Asymptotic stability of lattice solitons in the energy space. Commun Math Phys 288: 125–144. doi: 10.1007/s00220-009-0768-6
    [34] Pankov A (2005) Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices. Imperial College Press.
    [35] Angulo Pava J, Brango BC, Silva JD, et al. (2013) The regularized Boussinesq equation: instability of periodic traveling waves. J Differ Equations 254: 3994–4023. doi: 10.1016/j.jde.2013.01.034
    [36] Pego RL, Van TS (2018) Existence of solitary waves in one dimensional peridynamics. J Elast, arXiv: 1802.00516.
    [37] Pelinovsky D, Stepanyants Y (2004) Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations. SIAM J Numer Anal 42: 1110–1127. doi: 10.1137/S0036142902414232
    [38] Schneider G, Wayne CE (1999) Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, In: International Conference on Differential Equations, World Sci. Publ., River Edge, NJ, 2000, 390–404.
    [39] Schwetlick H, Zimmer J (2012) Kinetic relations for a lattice model of phase transitions. Arch Ration Mech Anal 206: 707–724. doi: 10.1007/s00205-012-0566-8
    [40] Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209. doi: 10.1016/S0022-5096(99)00029-0
    [41] Silling SA (2016) Solitary waves in a peridynamic elastic solid. J Mech Phys Solids 96: 121–132. doi: 10.1016/j.jmps.2016.06.001
    [42] Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44: 73–168. doi: 10.1016/S0065-2156(10)44002-8
    [43] Starosvetsky Y, Vainchtein A (2018) Solitary waves in FPU lattices with alternating bond potentials. Mech Res Commun 93: 148–153. doi: 10.1016/j.mechrescom.2017.10.007
    [44] Stefanov A, Kevrekidis PG (2012) On the existence of solitary traveling waves for generalized Hertzian chains. J Nonlinear Sci 22: 327–349. doi: 10.1007/s00332-011-9119-9
    [45] Treschev D (2004) Travelling waves in FPU lattices. Discrete Cont Dyn S 11: 867–880. doi: 10.3934/dcds.2004.11.867
    [46] Truskinovsky L, Vainchtein A (2005) Kinetics of martensitic phase transitions: lattice model. SIAM J Appl Math 66: 533–553. doi: 10.1137/040616942
    [47] Truskinovsky L, Vainchtein A (2014) Solitary waves in a nonintegrable Fermi-Pasta-Ulam chain. Phys Rev E 90: 042903. doi: 10.1103/PhysRevE.90.042903
    [48] Weinstein MI (1999) Excitation thresholds for nonlinear localized modes on lattices. Nonlinearity 12: 673–691. doi: 10.1088/0951-7715/12/3/314
    [49] Zabusky NJ, Kruskal MD (1965) Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240–243.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3809) PDF downloads(652) Cited by(4)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog