Research article Special Issues

Breast cancer chemical structures and their partition resolvability


  • Received: 05 October 2022 Revised: 12 November 2022 Accepted: 02 December 2022 Published: 12 December 2022
  • Cancer is a disease that causes abnormal cell formation and spreads throughout the body, causing harm to other organs. Breast cancer is the most common kind among many of cancers worldwide. Breast cancer affects women due to hormonal changes or genetic mutations in DNA. Breast cancer is one of the primary causes of cancer worldwide and the second biggest cause of cancer-related deaths in women. Metastasis development is primarily linked to mortality. Therefore, it is crucial for public health that the mechanisms involved in metastasis formation are identified. Pollution and the chemical environment are among the risk factors that are being indicated as impacting the signaling pathways involved in the construction and growth of metastatic tumor cells. Due to the high risk of mortality of breast cancer, breast cancer is potentially fatal, more research is required to tackle the deadliest disease. We considered different drug structures as chemical graphs in this research and computed the partition dimension. This can help to understand the chemical structure of various cancer drugs and develop formulation more efficiently.

    Citation: Qingqun Huang, Adnan Khalil, Didar Abdulkhaleq Ali, Ali Ahmad, Ricai Luo, Muhammad Azeem. Breast cancer chemical structures and their partition resolvability[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3838-3853. doi: 10.3934/mbe.2023180

    Related Papers:

  • Cancer is a disease that causes abnormal cell formation and spreads throughout the body, causing harm to other organs. Breast cancer is the most common kind among many of cancers worldwide. Breast cancer affects women due to hormonal changes or genetic mutations in DNA. Breast cancer is one of the primary causes of cancer worldwide and the second biggest cause of cancer-related deaths in women. Metastasis development is primarily linked to mortality. Therefore, it is crucial for public health that the mechanisms involved in metastasis formation are identified. Pollution and the chemical environment are among the risk factors that are being indicated as impacting the signaling pathways involved in the construction and growth of metastatic tumor cells. Due to the high risk of mortality of breast cancer, breast cancer is potentially fatal, more research is required to tackle the deadliest disease. We considered different drug structures as chemical graphs in this research and computed the partition dimension. This can help to understand the chemical structure of various cancer drugs and develop formulation more efficiently.



    加载中


    [1] B. Figuerola, C. Avila, The phylum bryozoa as a promising source of anticancer drugs, Mar. Drugs, 17 (2019), 477. https://doi.org/10.3390/md17080477 doi: 10.3390/md17080477
    [2] L. J. Kristjanson, T. Ashcroft, The family's cancer journey, Cancer Nurs., 17 (1994), 1–17. https://doi.org/10.1097/00002820-199402000-00001 doi: 10.1097/00002820-199402000-00001
    [3] S. Kumar, M. K. Ahmad, M. Waseem, A. K. Pandey, Drug targets for cancer treatment: an overview, Med. Chem., 5 (2015), 115123. https://doi.org/10.4172/2161-0444.1000252 doi: 10.4172/2161-0444.1000252
    [4] R. C. Richie, J. O. Swanson, Breast cancer: a review of the literature, J. Insur. Med., 35 (2003), 85–101. Available from: https://www.aaimedicine.org/journal-of-insurance-medicine/jim/2003/035-02-0085.pdf.
    [5] A. G. Waks, E. P. Winer, Breast cancer treatment, JAMA, 321 (2019), 288–300. https://doi.org/10.1001/jama.2018.19323 doi: 10.1001/jama.2018.19323
    [6] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. https://doi.org/10.1016/0166-218X(95)00106-2 doi: 10.1016/0166-218X(95)00106-2
    [7] M. F. Nadeem, M. Hassan, M. Azeem, S. U. Khan, M. R. Shaik, M. A. F. Sharaf, et al., Application of resolvability technique to investigate the different polyphenyl structures for polymer industry, J. Chem., 2021 (2021). https://doi.org/10.1155/2021/6633227 doi: 10.1155/2021/6633227
    [8] A. Ali, W. Nazeer, M. Munir, S. M. Kang, M-polynomials and topological indices of zigzagand rhombic benzenoid systems, Open Chem., 16 (2018), 73–78. https://doi.org/10.1515/chem-2018-0010 doi: 10.1515/chem-2018-0010
    [9] S. Hayat, S. Wang, J. B. Liu, Valency-based topological descriptors of chemical networks and their applications, Appl. Math. Modell., 60 (2018), 164–178. https://doi.org/10.1016/j.apm.2018.03.016 doi: 10.1016/j.apm.2018.03.016
    [10] S. Kavitha, J. Abraham, M. Arockiaraj, J. Jency, K. Balasubramanian, Topological characterization and graph entropies of tessellations of kekulene structures: existence of isentropic structures and applications to thermochemistry, nuclear magnetic resonance, and electron spin resonance, J. Phys. Chem. A, 125 (2021), 8140–8158. https://doi.org/10.1021/acs.jpca.1c06264 doi: 10.1021/acs.jpca.1c06264
    [11] M. K. Jamil, M. Imran, K. A. Sattar, Novel face index for benzenoid hydrocarbons, Mathematics, 8 (2020), 312. https://doi.org/10.3390/math8030312 doi: 10.3390/math8030312
    [12] M. F. Nadeem, M. Azeem, H. M. A. Siddiqui, Comparative study of zagreb indices for capped, semi-capped, and uncapped carbon nanotubes, Polycyclic Aromat. Compd., 42 (2022), 3545–3562. https://doi.org/10.1080/10406638.2021.1890625 doi: 10.1080/10406638.2021.1890625
    [13] M. F. Nadeem, M. Imran, H. M. A. Siddiqui, M. Azeem, A. Khalil, Y. Ali, Topological aspects of metal-organic structure with the help of underlying networks, Arabian J. Chem., 14 (2021), 103157. https://doi.org/10.1016/j.arabjc.2021.103157 doi: 10.1016/j.arabjc.2021.103157
    [14] A. Ahmad, A. N. A. Koam, M. H. F. Siddiqui, M. Azeem, Resolvability of the starphene structure and applications in electronics, Ain Shams Eng. J., 13 (2022), 101587. https://doi.org/10.1016/j.asej.2021.09.014 doi: 10.1016/j.asej.2021.09.014
    [15] A. Sebö, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 191–406. https://doi.org/10.1287/moor.1030.0070 doi: 10.1287/moor.1030.0070
    [16] P. J. Slater, Leaves of trees, Congr. Numer, 14 (1975), 549–559.
    [17] P. Singh, S. Sharma, S. K. Sharma, V. K. Bhat, Metric dimension and edge metric dimension of windmill graphs, AIMS Math., 6 (2021), 9138–9153. https://doi.org/10.3934/math.2021531 doi: 10.3934/math.2021531
    [18] A. E. Moreno, I. G. Yero, J. A. R. Velazquez, On the (k, t)-metric dimension of graphs, Comput. J., 64 (2021), 707–720. https://doi.org/10.1093/comjnl/bxaa009 doi: 10.1093/comjnl/bxaa009
    [19] S. Pirzada, M. Aijaz, On graphs with same metric and upper dimension, Discrete Math. Algorithms Appl., 13 (2021), 2150015. https://doi.org/10.1142/S1793830921500154 doi: 10.1142/S1793830921500154
    [20] M. Azeem, M. F. Nadeem, Metric-based resolvability of polycyclic aromatic hydrocarbons, Eur. Phys. J. Plus, 136 (2021), 395. https://doi.org/10.1140/epjp/s13360-021-01399-8 doi: 10.1140/epjp/s13360-021-01399-8
    [21] S. Imran, M. K. Siddiqui, M. Imran, M. Hussain, On metric dimensions of symmetric graphs obtained by rooted product, Mathematics, 6 (2018), 191. https://doi.org/10.3390/math6100191 doi: 10.3390/math6100191
    [22] A. N. Koam, A. Ahmad, M. E. Abdelhag, M. Azeem, Metric and fault-tolerant metric dimension of hollow coronoid, IEEE Access, 9 (2021), 81527–81534. https://doi.org/10.1109/ACCESS.2021.3085584 doi: 10.1109/ACCESS.2021.3085584
    [23] A. N. Koam, A. Ahmad, M. S. Alatawi, M. F. Nadeem, M. Azeem, Computation of metric-based resolvability of quartz without pendant nodes, IEEE Access, 9 (2021), 151834–151840. https://doi.org/10.1109/ACCESS.2021.3126455 doi: 10.1109/ACCESS.2021.3126455
    [24] K. Anitha, R. A. Devi, M. Munir, K. S. Nisar, Metric dimension of rough graphs, Int. J. Nonlinear Anal. Appl., 12 (2021), 1793–1806. https://doi.org/10.22075/ijnaa.2021.5891 doi: 10.22075/ijnaa.2021.5891
    [25] M. Moscarini, Computing a metric basis of a bipartite distance-hereditary graph, Theor. Comput. Sci., 900 (2022), 20–24. https://doi.org/10.1016/j.tcs.2021.11.015 doi: 10.1016/j.tcs.2021.11.015
    [26] A. N. A. Koam, A. Haider, M. A. Ansari, Pseudo-metric on KU-algebras, Korean J. Math., 27 (2019), 131–140. https://doi.org/10.11568/kjm.2019.27.1.131 doi: 10.11568/kjm.2019.27.1.131
    [27] A. Ahmad, M. Baca, S. Sultan, On the minimal doubly resolving sets of Harary graph, Acta Math. Universitatis Comenianae, 89 (2019), 123–129. Available from: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1032.
    [28] A. Ahmad, M. Baca, S. Sultan, Computing the metric dimension of Kayak Paddles graph and Cycles with chord, Proyecciones (Antofagasta, On line), 39 (2020), 287–300. https://doi.org/10.22199/issn.0717-6279-2020-02-0018 doi: 10.22199/issn.0717-6279-2020-02-0018
    [29] A. Ahmad, M. Baca, S. Sultan, Minimal doubly resolving sets of Necklace graph, Math. Rep., 20 (2018), 123–129. Available from: http://www.imar.ro/journals/Mathematical_Reports/Pdfs/2018/2/2.pdf.
    [30] T. Vetrik, A. Ahmad, Computing the metric dimension of the categorial product of graphs, Int. J. Comput. Math., 94 (2017), 363–371. https://doi.org/10.1080/00207160.2015.1109081 doi: 10.1080/00207160.2015.1109081
    [31] A. Ahmad, S. Sultan, On minimal doubly resolving sets of circulant graphs, Acta Mech. Sin., 21 (2017), 6–11. https://doi.org/10.21496/ams.2017.002 doi: 10.21496/ams.2017.002
    [32] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of certain interconnection networks, J. Appl. Math. Comput., 60 (2019), 517–535. https://doi.org/10.1007/s12190-018-01225-y doi: 10.1007/s12190-018-01225-y
    [33] H. Raza, S. Hayat, M. Imran, X. F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78–97. https://doi.org/10.3390/math7010078 doi: 10.3390/math7010078
    [34] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. https://doi.org/10.1016/j.amc.2018.07.010 doi: 10.1016/j.amc.2018.07.010
    [35] T. Mahapatra, G. Ghorai, M. Pal, Fuzzy fractional coloring of fuzzy graph with its application, J. Ambient Intell. Hum. Comput., 11 (2020), 5771–5784. https://doi.org/10.1007/s12652-020-01953-9 doi: 10.1007/s12652-020-01953-9
    [36] F. Harary, F. H. Melter, On the metric dimension of a graph, Ars Combin, 2 (1976), 191–195.
    [37] J. P. Sturmberg, G. M. McDonnell, How modelling could contribute to reforming primary care—tweaking the ecology of medical care in Australia, AIMS Med. Sci., 3 (2016), 298–311. https://doi.org/10.3934/medsci.2016.3.298 doi: 10.3934/medsci.2016.3.298
    [38] R. Zheng, H. Jia, L. Abualigah, Q. Liu, S. Wang, An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems, Math. Biosci. Eng., 19 (2022), 473–512. https://doi.org/10.3934/mbe.2022023 doi: 10.3934/mbe.2022023
    [39] J. B. Liu, M. F. Nadeem, M. Azeem, Bounds on the partition dimension of convex polytopes, Comb. Chem. High Throughput Screening, 25 (2020), 547–557. https://doi.org/10.2174/1386207323666201204144422 doi: 10.2174/1386207323666201204144422
    [40] M. Azeem, M. Imran, M. F. Nadeem, Sharp bounds on partition dimension of hexagonal mobious ladder, J. King Saud Univ. Sci., 34 (2022), 101779. https://doi.org/10.1016/j.jksus.2021.101779 doi: 10.1016/j.jksus.2021.101779
    [41] A. Shabbir, M. Azeem, On the partition dimension of tri-hexagonal alpha-boron nanotube, IEEE Access, 9 (2021), 55644–55653. https://doi.org/10.1109/ACCESS.2021.3071716 doi: 10.1109/ACCESS.2021.3071716
    [42] H. M. A. Siddiqui, M. Imran, Computing the metric and partition dimension of h-naphtalenic and $VC_5$$C_7$ nanotubes, J. Optoelectron. Adv. Mater., 17 (2015), 790–794.
    [43] H. M. A. Siddiqui, M. Imran, Computing metric and partition dimension of 2-dimensional lattices of certain nanotubes, J. Comput. Theor. Nanosci., 11 (2014), 2419–2423. https://doi.org/10.1166/jctn.2014.3656 doi: 10.1166/jctn.2014.3656
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1906) PDF downloads(101) Cited by(8)

Article outline

Figures and Tables

Figures(12)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog