Citation: Jia-Ning Luo, Meng-Hsuan Tsai, Nai-Wei Lo, Chih-Yang Kao, Ming-Hour Yang. Ambient audio authentication[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6562-6586. doi: 10.3934/mbe.2019327
[1] | S. Babar, A. Stango, N. Prasad, et al., Proposed embedded security framework for internet of things (IoT), in 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE) , IEEE, (2011), 1–5. |
[2] | C. M. Chen, B. Xiang, Y. Liu, et al., A secure authentication protocol for internet of vehicles, IEEE Access, 7 (2019), 12047–12057. |
[3] | J. C. W. Lin, J. M. T. Wu, P. Fournier-Viger, et al., A sanitization approach to secure shared data in an IoT environment, Multimed. Tools Appl., 75 (2016), 14075–14087. |
[4] | K. H. Wang, C. M. Chen, W. Fang, et al., On the security of a new ultra-lightweight authentication protocol in IoT environment for RFID tags, J. Supercomput., 74 (2018), 65–70. |
[5] | H. Xiong and Z. Qin, Revocable and scalable certificateless remote authentication protocol with anonymity for wireless body area networks, IEEE T. Inf. Foren. Sec., 10 (2015), 1442–1455. |
[6] | T. Y. Wu, C. M. Chen, K. H. Wang, et al., A provably secure certificateless public key encryption with keyword search, J. Chin. Inst. Eng., 42 (2019), 20–28. |
[7] | H. Xiong, Y. Zhao, L. Peng, et al., Partially policy-hidden attribute-based broadcast encryption with secure delegation in edge computing, Future Gener. Comp. Sy., 97 (2019), 453–461. |
[8] | J. N. Luo and M. H. Yang, A mobile authentication system resists to shoulder-surfing attacks, Multimed. Tools Appl., 75 (2016), 14075–14087. |
[9] | J. N. Luo, M. H. Yang and C. L. Tsai, An anti-shoulder-surfing authentication scheme of mobile device, J. Internet Technol., 19 (2018), 1263–1272. |
[10] | K. H. Yeh, C. Su, W. Chiu, et al., I walk, therefore I am: continuous user authentication with plantar biometrics, IEEE Commun. Mag., 56 (2018), 150–157. |
[11] | L. Zhou, C. Su, W. Chiua, et al., You think, therefore you are: transparent authentication system with brainwave-oriented bio-features for IoT networks, IEEE T. Emerg. Top. Com., (2017). |
[12] | M. Gao, X. Hu, B. Cao, et al., Fingerprint sensors in mobile devices, in 2014 9th IEEE Conference on Industrial Electronics and Applications, IEEE, (2014), 1437–1440. |
[13] | A. Roy, N. Memon and A. Ross, Masterprint: Exploring the vulnerability of partial fingerprint-based authentication systems, IEEE T. Inf. Foren. Sec., 12 (2017), 2013–2025. |
[14] | A. Bud, Facing the future: The impact of apple Face ID, Biometric Technol. Today, 2018 (2018), 5–7. |
[15] | GSMA.com, SS7 vulnerabilities and attack exposure report 2018, 2018. Available from: https://www.gsma.com/membership/ss7-vulnerabilities-and-attack-exposure-report-2018/. |
[16] | Google Inc., Google authenticator open source, 2018. Available from: https://github.com/google/google-authenticator. |
[17] | FIDO Alliance, FIDO (Fast IDentity Online) Alliance, 2018. Available from: https://fidoalliance.org. |
[18] | FIDO Alliance, FIDO speficication 1.0, 2014. Available from: https://fidoalliance.org/fido-1-0-specifications-published-and-final/. |
[19] | FIDO Alliance, FIDO UAF architectural overview, 2017. Available from: https: //fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1. 1-ps-20170202.html. |
[20] | FIDO Alliance, FIDO Universal 2nd factor (U2F) overview, 2017. Available from: https: //fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1. 2-ps-20170411.html. |
[21] | W. Choi, M. Seo and D. H. Lee, Sound-proximity: 2-factor authentication against relay attack on passive keyless entry and start system, J. Adv. Transport., (2018), 1–13. |
[22] | J. Krumm and K. Hinckley, The nearme wireless proximity server, in International Conference on Ubiquitous Computing, Springer, (2004), 283–300. |
[23] | A. Levi, E. C¸etintas ¸, M. Aydos, et al., Relay attacks on bluetooth authentication and solutions, in International Symposium on Computer and Information Sciences, Springer, (2004), 278–288. |
[24] | A. Francillon, B. Danev and S. Capkun, Relay attacks on passive keyless entry and start systems in modern cars, in Proceedings of the Network and Distributed System Security Symposium (NDSS), Internet Society, (2011). |
[25] | L. Francis, G. Hancke, K. Mayes, et al., Practical NFC peer-to-peer relay attack using mobile phones, in International Workshop on Radio Frequency Identification: Security and Privacy Is-sues, Springer, (2010), 35–49. |
[26] | B. Shrestha, M. Shirvanian, P. Shrestha, et al., The sounds of the phones: Dangers of zero-effort second factor login based on ambient audio, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM, (2016), 908–919. |
[27] | A. Varshavsky, A. Scannell, A. LaMarca, et al., Amigo: Proximity-based authentication of mobile devices, in International Conference on Ubiquitous Computing, Springer, (2007), 253–270. |
[28] | Wireless Cables Inc., Aircable, 2019. Available from: https://www.aircable.net/extend.php. |
[29] | D. Schürmann and S. Sigg, Secure communication based on ambient audio, IEEE T. Mobile Com-put., 12 (2013), 358–370. |
[30] | M. Miettinen, N. Asokan, T. D. Nguyen, et al., Context-based zero-interaction pairing and keyevolution for advanced personal devices, in Proceedings of the 2014 ACM SIGSAC Conferenceon Computer and Communications Security, ACM, (2014), 880–891. |
[31] | B. Shrestha, N. Saxena, H. T. T. Truong, et al., Drone to the rescue: Relay-resilient authenticationusing ambient multi-sensing, in International Conference on Financial Cryptography and DataSecurity, Springer, (2014), 349–364. |
[32] | M. Shirvanian, S. Jarecki, N. Saxena, et al., Two-factor authentication resilient to server com-promise using mix-bandwidth devices, in Proceedings of the Network and Distributed SystemSecurity Symposium (NDSS), Internet Society, (2014). |
[33] | T. K. Hon, L. Wang, J. D. Reiss, et al., Audio fingerprinting for multi-device self-localization, IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 23 (2015), 1623–1636. |
[34] | N. Nguyen, S. Sigg, A. Huynh, et al., Using ambient audio in secure mobile phone communication,in 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, IEEE, (2012), 431–434. |
[35] | N. Karapanos, C. Marforio, C. Soriente, et al., Sound-proof: usable two-factor authenticationbased on ambient sound, in 24th USENIX Security Symposium (USENIX Security 15), (2015),483–498. |
[36] | D. Arp, E. Quiring, C. Wressnegger, et al., Privacy threats through ultrasonic side channels onmobile devices, 2017 IEEE European Symposium on Security and Privacy (EuroS&P), (2017),35–47. |
[37] | L. Blue, H. Abdullah, L. Vargas, et al., 2MA - Verifying Voice Commands via Two Microphone Authentication., in AsiaCCS 2018, (2018), 89–100. |
[38] | M. Wang, W. T. Zhu, S. Yan, et al., SoundAuth: Secure Zero-Effort Two-Factor Authentication Based on Audio Signals, in 2018 IEEE Conference on Communications and Network Security (CNS), IEEE, (2018), 1–9. |
[39] | L. Deshotels, Inaudible sound as a covert channel in mobile devices, in 8th USENIX Workshop on Offensive Technologies (WOOT 14), (2014). |