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Abstract: In the IoT environment, many terminal devices are deployed in unattended areas. If these
devices are moved elsewhere by an attacker, the wrong environmental sensing values are obtained,
which causes a major disaster. In this paper, we propose an ambient authentication mechanism based
on audio to be used in multi-factor authentication by using the ambient sensors equipped with a smart
phone. An ultrasonic signal that is not detectable by the human ear was transmitted by the authenti-
cator, and the attenuated signal received by the user being authenticated was transmitted back to the
authentication server. The transmitted and received decoded symbol sequences of the audio signal
are used to calculated the bit error rate, which is used to measure the relative distance. Our proposed
method can narrow the authentication distance to less than 0.5 meters, which can greatly improve the
security of the authentication system.
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1. Introduction

In recent years, the security of the Internet of Things has become a very important issue, especially
the access control and the remote authentication security [1, 2, 3, 4, 5]. In the early stages of Internet-
of-Things (IoT) environment, traditional authentication protocols such as text passwords, certificates,
or ciphertext-policy attribute-based encryption (CP-ABE) were used to protect a device’s identity [6,
7]; but the shortcoming was that sensitive keys were easily stolen in device’s un-protected memory.
Moreover, text-based passwords are unable to prevent shoulder-surfing attacks [8, 9].

To reduce the use of passwords, identity authentication for devices has progressed to two-factor-
based authentication (2FA), multi-factor authentication (MFA), or two-step verification. Particularly,
2FA is a method to verify a legitimate user by combining two distinct identity authentication factors.
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A commonly used 2FA scheme combines a password with personal biometrics, such as fingerprints,
facial features, brainwave, or plantar biometrics [10, 11] .

The use of fingerprints is a long-standing and widely used method of identifying individuals [12].
Characteristics of fingerprints are persistent, unique, and reproducible. A fingerprint does not change
dramatically throughout a person’s life, and it returns to its original shape even if it has worn. In
particular, reproducibility of prints of the finger is quicker than that of prints of other body parts.
Moreover, nearly every fingerprint is distinct, and it is extremely unlikely that any two people have
identical fingerprints. However, the use of fingerprint verification is not necessarily secure. Roy et al.
[13] revealed that smart phones do not use full-scale fingerprint sensors because the sensing elements
required of such sensors are too large. Therefore, the fingerprint sensors used in smart phone are
compact versions of larger sensors. For instance, the fingerprint sensor on an iPhone can detect only
a central finger area of approximately 0.8 cm x 0.8 cm instead of the whole finger. Therefore, the
system compares only partial fingerprints read by the fingerprint sensor with the fingerprints in the
system’s database, and identity authentication requires only partial compliance. In short, when a user
inputs fingerprint data into an authentication database, the fingerprint is successfully matched when
any partial fingerprints read by the sensor match any part of the input fingerprint. Roy et al., proposed
a fingerprint database comparison to identify a fingerprint using a fingerprint from the sensor size of a
smart phone, and the personal fingerprint is called a MasterPrint. The login success rate was 26.46% if
five MasterPrints were used during five attempts to log in through identity verification; this was higher
than the 0.1% of the false acceptance rate (FAR) of a full fingerprint sensor.

Another biometric method of identification involves face recognition. For example, the Face ID
technology in Apple’s products uses a TrueDepth camera to retrieve and analyze more than 30,000
invisible points to create a facial depth map and simultaneously retrieves an infrared image of the face
[14]. Subsequently, the depth map and infrared images are converted to mathematical representations
for comparison with the registered facial data. However, fingerprint and Face ID authentications do not
fully protect users’ privacy. Users can choose not to disclose their text passwords, but they are unable
to stop the retrieval of biometric information by judicial bodies. According to a news source, in August
2018, an American Federal Bureau of Investigation agent requested a suspect use Face ID scanning to
unlock his mobile phone during a forensic process.

Companies such as Apple, Google, and Microsoft are increasingly adopting a two-step verification
mechanism to enhance the security of identity authentication. The earliest two-step verification mech-
anism sends a specific website link or single-use password to a user’s mobile phone number or email
account. The user must enter the single-use password into the authentication system or click the spe-
cific website link to complete the authentication process. Nevertheless, this authentication mechanism
is unsafe. An attacker can forge an email or text message and add the URL of a phishing website
to decoy users into unintentionally revealing their account numbers and text passwords. Users have
difficulty identifying those phishing websites because they often use URL shorteners such as goo.gl
and bit.ly to redirect; this problem forced Google to shut down its goo.gl redirection service in March
2018 [15].

Another major problem is that sending a single-use password or URL via short message service
(SMS) is unsafe [15]. Currently, the bottom layer of the telephone network is based on the signaling
system 7 (SS7) network architecture. The SS7 network architecture is not closed; any Type II telecom-
munication enterprise can easily access the network. As a result, attackers exploit this drawback and
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intercept calls and SMS messages to steal single-use passwords. Moreover, government departments
can directly monitor a user’s communication and block one-time passwords.

Therefore, the use of special apps instead of SMS for authentication messages has gradually become
mainstream. Google’s two-step verification mechanism (Google authenticator) uses a time-sensitive
single-use password mechanism. Furthermore, Google also opened the Google authenticator source
code for public use on GitHub [16]. To protect account security, the Fast Identity Online (FIDO) orga-
nization, in which Google participates [17], proposed a series of identity authentication mechanisms:
the universal authentication framework, universal second factor, and FIDO 2 [18, 19, 20]. In addition
to the use of a user authentication system for a mobile device’s web services, additional hardware
devices were added for identity authentication.

The 2FA, MFA, and two-step verification systems require users and other hardware devices (e.g.,
mobile phones) to perform authentication. For example, an authentication server sends an authentica-
tion code to a user’s mobile device, and the user inputs the code in authentication system interface for
authentication. In recent years, researchers have aimed to develop additional authentication factors for
back-end authentication servers to use to authenticate a device’s identity without external operations or
hardware. Such authentication mechanisms are called zero-interaction authentication (ZIA). The ear-
liest proposed ZIA method used short-distance communication technology to determine distance be-
tween the two IoT devices [21]. For instance, Bluetooth technology allows users to pair mobile phones
with a computer and unlock the computer from its idle screen without additional operations. However,
this authentication may be susceptible to a relay attack. Studies have proposed various short-distance
wireless communication technologies, such as Bluetooth [22, 23], radio-frequency identification [24],
and near-field communication [4, 25], can be used for relay attacks. Findings have suggested that their
security vulnerability poses a threat to the ZIA system.

Recent studies have proposed distance-bounding techniques to protect ZIA systems from relay at-
tacks [21, 26]. Distance-bounding techniques assume the prover and verifier are bound to the security
parameters, where the verifier transmits the challenge to the prover, and the prover accepts and re-
sponds to the challenge sent by the verifier. Subsequently, the authentication server calculates the time
difference between when the challenge is sent and when the correct response is received and measures
the closest distance between the two ends. However, the disadvantage of distance bounding is that any
slight error by the prover can cause a large overall error; thus, this technique is difficult to implement
effectively on physical devices.

Because modern IoT devices are embedded with sensors that can collect information from their sur-
roundings, studies have proposed them as alternatives to using distance-bounding techniques. Authen-
tication systems can utilize environmental information to prove that two devices are within the same
environment. Many studies have proposed the adoption of authentication mechanisms for smartphones
because smartphones are popular and equipped with software and hardware that aid authentication sys-
tems through what is called as ambient authentication. In [27], four common ambient factors, namely
WiFi, Bluetooth, GPS, and audio were mentioned. WiFi uses wireless access points to record the Eth-
ernet media access control address (BSSID) list of devices and the associated received signal strength
indicators (RSSIs); Bluetooth records each Bluetooth device address (BDADDR) and RSSI. The actual
communication distance of Bluetooth 4.2 is approximately 10m, whereas the indoor communication
distance of unobstructed WiFi can reach 169 m. Longer transmission distances can cause larger errors.
Moreover, Bluetooth and WiFi have mature detectors that allow attackers to detect transmitted content
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easily by remotely connecting to a user’s mobile phone [28] and impersonating the user. GPS uses the
signal-to-noise ratio of each GPS satellite to determine its ranging code and signal strength. However,
GPS cannot be used indoors. Audio authentication technology fetches feature values in ambient audio
signals near a device. For example: Schurmann et al. proposed using the change of frequency energy
in the ambient audio signal as the feature value [29] .

In a related study of ambient authentication systems, Miettinen et al. proposed a ZIA mechanism
for Internet of Things and wearable devices [30] that pairs a user’s personal device without the user’s
participation. The advantage of this mechanism is that it can resist relay attacks, but this method
reveals the private information from users in the environment because it collects multiple ambient
characteristics from devices for long-term use.

Babins et al. proposed integration of multiple sensing information characteristics to verify whether
the authenticator and user being authenticated are within the same environment [31]. Integration of
multiple sensors, such as temperature, air pressure, humidity, and altitude sensors, is used to deter-
mine the proximity of the authenticator to the user. This method is safer than single-mode sensing
techniques, such as those utilizing WiFi, Bluetooth, GPS, and audio, because attackers must simulate
multiple environmental features to achieve false authentication. Nonetheless, the downside of multiple
sensors is the requirement of additional device-assisted authentication.

Shirvanian et al. proposed a hybrid-bandwidth device authentication mechanism [32] with four
novel encryption protocols for WiFi verification that can resist authentication server breaches. One
protocol is based on time, and the other three are based on challenges, one of which involves symmet-
ric key encryption and the other two involve public key encryption. These protocols have different au-
thentication mechanisms, which are implemented by a hybrid-bandwidth communication channel that
can be established between the device and client browser. The authentication mechanisms are based
on (1) one-way and two-way low-bandwidth (19-bit or 6-bit) channels formed by manual personal
identification number input or quick response (QR) code; (2) a two-way medium-bandwidth channel
established by QR code; and (3) two-way full-bandwidth Bluetooth or point-to-point WiFi channels
as well as the combinations of these channels. This results in a total of 13 possibilities offering dif-
ferent security assurance and usability advantages. The advantage of the Shirvanian et al. mechanism
is that it can withstand different forms of attacks such as wiretapping and man-in-the-middle attacks
on client-to-device communication, including offline and online attacks; the disadvantage is that users
must perform this setup process each time they log in to a new computer. This method also requires
background monitoring of incoming connections from mobile applications, something currently un-
feasible on iOS.

Presently, audio cryptography techniques can bolster the security of authentication mechanisms
using the audio features in the environment, and the use of ambient audio requires an apparent noise
environment [29]. Consideration of the energy difference between the peak values of the ambient
audio during feature calculation enables a password to be derived that possesses high entropy security
and is difficult to guess [27, 33, 34, 35]. Schurmann et al. proposed sharing a key among devices
that is based on similar ambient audio [29], using the ambient audio to generate the shared key on
the device, and using the change in frequency energy in the ambient audio as the feature value. The
energy difference of the frequency can lead to a high-security password, but it cannot defend against
attackers in the same environment and with similar ambient sound. Karapanos et al. proposed an
identity authentication mechanism, Sound-Proof, based on the proximity of ambient sounds [35]; it is a
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deployable and developable 2FA mechanism. Sound-Proof analyzes the proximity of the authenticator
to the user to be authenticated by comparing the ambient noise recorded by the microphones at both
authentication ends; the noise at the two ends must be similar to pass the authentication. In addition,
survey results demonstrated that users prefer Sound-Proof to Google 2-Step Verification. Moreover,
experimental results verified that ZIA authentication mechanisms based on ambient audio have high
usability. In [26], the weakness of Sound-Proof was discovered, and the Sound-Danger attack system
was proposed. The attack system comprises active and passive attack modes. Experimental results
showed that the proposed attack system had a success rate of up to 100%.

Arp et al. proposed using audio to establish a secret communication channel between devices [36] to
transmit a challenge-response authentication message to determine whether the two devices are within
the same environment. Schurmann et al. [29] proposed an ambient audio-based secure communication,
and Karapanos et al. [35] proposed an ambient audi-based two-factor identity authentication. How-
ever, their methods were unable to defend against attackers from the same environment and unable to
distinguish attackers with the same sound sources in different environments. The method proposed by
Schurmann et al. performs authentication within the same environment and establishes similar envi-
ronmental modes for various environments. The median of the bit similarity was only 0.05 in their
experiments, indicating that attackers could simulate the environment of the user being authenticated
for a relay attack.

A passive keyless system based on ambient audio was proposed by Choi et al. [21], which used of
the similarity of ambient audio in an existing passive keyless system to prevent two modes of attack,
namely out-of-range attacks and record-and-playback attacks. This method can solve the problem
of amplified and relay signals encountered in distance-bounding protocol and ultrasonic applications
in passive keyless systems. Varshavsky et al.[27] proposed the derivation of keys shared between
devices based on WiFi, and the findings revealed that the error was relatively large because the WiFi
transmission distance was far. Hien et al. [31] used combinations of four sensing models (WiFi,
Bluetooth, GPS, and audio) to detect whether the devices exist in the same environment. Blue et al.
proposed an 2MA authentication method by using two microphone to detect the sound source [37].
Wang et al. use audio signals to authenticate users by using the microphone of a smart phone [38].

This study proposed ambient audio authentication based on smart phones that do not require any
additional hardware. An ultrasonic signal that is not detectable by the human ear was transmitted by the
authenticator, and the attenuated signal received by the user being authenticated was transmitted back
to the authentication server. The authentication server determines the symbol error rate (SER) between
the original signal and the signal received from the end to be authenticated [36, 39]. Amplitudes of
audio signals decrease as the distance increases; thus, the signal-to-noise ratio decreases, causing an
increase in the SER. The authentication is successful if the SER is lower than the threshold, and it is
unsuccessful if the SER exceeds the threshold. Channel disturbances generated by background noises
in disparate environments may result in dissimilar SERs, which may cause difficulty for attackers
attempting to simulate a user’s environment from another environment. In our experimental result, we
can detect an attacker from with 0.5m.
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2. Architecture of ambient audio authentication system

In this study, our method using audio to transmit a challenge-response authentication message to
determine whether the two devices D1 and D2 are within the same environment (as shown in Figure 1).
The process is divided into proximity analysis and the authentication stage (Figure 3). The MFA mech-
anism proposed in this study mainly consisted of four steps. The following is a detailed description of
each step:

1. Password authentication: The user first logs in to the website through password authentication,
and the website transmits the authentication request to the authentication server, S. The password
will be sent to S for verification. S requests that the user to provide MFA information if the user
has passed the password authentication.

2. D1 ambient authentication: S sends a push notification to activate D2’s speaker and D1’s micro-
phone and allows D2 to transmit an audio signal to D1. D1 receives the audio signal and sends it
back to S.

3. D2 ambient authentication: S sends a push notification to activate D1’s speaker and D2’s micro-
phone. D1 sends a local audio signal to D2 and simultaneously sends the transmitted audio signal
back to S.

4. The MFA verification: the authentication server S: Analysis is conducted when S receives the
audio signals sent back from D1 or D2. The authentication is successful if the bit error rate
(BER) is lower than a predefined value; by contrast, the authentication fails and is discontinued if
the BER is higher than the predefined value.

1 2 Prompt the device to transmit sound signals.

1 2
Transmit the audio 
signal.

S
D1D2

1 2
Return the received 
audio signal. 

1 2 Transmit the sound signals.

1 2
Transmit the audio

1 2 Return the received audio signals. 

Figure 1. Challenge-Response ambient authentication.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6562–6586.



6568

Ambient audio 
authentication 
mechanism.

Proximity 
analysis 
model.

Authentication.

User being 
authenticated: 
record audio.

Decoding.

Authenticator: 
transmit audio. Difference 

comparison.
Set threshold 
value.

Authenticator: 
transmit audio.

User being 
authenticated: 
record audio. 

Decoding.
Difference 
comparison. Scoring.

Pass or reject.

Figure 2. Ambient audio authentication.

2.1. Ambient audio authentication mechanism

This study proposed a method in which the authentication server uses the authentication end and
the end to be authenticated to transmit and receive an encoded audio signal and determine whether the
ends are within the same environment. The authenticator and user being authenticated in the proximity
analysis model send and receive audio signals 100 times, and the system records the transmitted and
received signals and decodes them into a symbol sequence. A differential formula is used to calculate
the differences between the two symbol sequences. Subsequently, the BER is calculated, and the
threshold value is defined. Finally, the threshold value is stored in the authentication server; when
the authenticator and user being authenticated send and receive audio signals, the calculated BER is
compared with the threshold value. The notations are shown in Table 1.

2.1.1. Proximity analysis

The proximity analysis model of this study is divided into five steps: (a) encoding the symbol
sequence of transmitted signals, (b) decoding the symbol sequence of received signals, (c) comparing
the two symbol sequences, (d) calculating the BER, and (e) defining the threshold value.

A. Encoding symbol sequence of transmitted signals

The authentication server records the audio sequence number transmitted and received by the au-
thenticator and user being authenticated a total of 100 times. The encoded signal is defined as symbols
encoded at different frequencies, where the audio signal s(t) has the ith frequency at time t, and the
entire audio signal s(t) is randomly formed and contains 20 frequency codes (Table 2).
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Table 1. Notations.

Symbols Definitions

S ymbol 20 frequency sequences used to transmit audio,
S ymbol = {symbol1, symbol2, . . . , symboln} , n= 20.

S Sequence of symbols encoded at the ith point of time with a total of n symbols.
S = {s1, s2, . . . , sn}

#(S ) Length of the symbol sequence si

x(t) Signal model is decoded by the authentication server, and the signal
x(t) = A(t)cos(φ(t)) = A(t)cos

∫ t

0
w(t)dt changes over time.

#(x(t)) Total duration of the signal
xa(t) The analytic signal of the original signal x(t)
xa( f ) The frequency-domain signal of xa(t).

A Amplitude
φ Phase
ω Frequency
ω(t) Instantaneous frequency of the signal x(t),

ω(t) = φ′(t) = d
dtφ(t).

f requ Instantaneous frequency value in the ith second;
n = 4800 is the instantaneous frequency value.
f requ = {ω1, ω2, . . . , ωn}.

X Sequence of symbols decoded at the ith second, with a total of n symbols.
X = {x1, x2, . . . , xn}.

#(T ) Total length of the symbol sequence.
Err Calculation of the difference between the transmitted and received symbols,

with a total of k nonzero vector values. Err = X − S = {err1, err2, . . . , errn}

eb Calculation of the total number of error symbols in the form,
eb =

∑k
i=1 erri.

ber Calculation of the BER for scoring, ber = eb
#(s) .

Ber Count the kth calculation result in the storage array of the BER,
Ber = {ber1, ber2, . . . , berk}.

threshold Threshold value
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Table 2. Frequency and symbol definitions.

Frequency (Hz) Symbol Frequency (Hz) Symbol

16,000 A 16,075 B
16,150 C 16,225 D
16,300 E 16,375 F
16,450 G 16,525 H
16,600 I 16,675 J
16,750 K 16,825 L
16,900 M 16,975 N
17,050 O 17,125 P
17,200 Q 17,275 R
18,000 Start 19,000 END

B. Decoding symbol sequence of received signals

The audio signal received by the authenticator and user being authenticated is sent back to the
authentication server for decoding. The signal model decoded by the authentication server is used to
define the instantaneous frequency calculated at the independent time t.

First, the original signal x(t) is analyzed by the analytic signal model. The analytic signal simplifies
the calculation of the instantaneous frequency. In addition, Hilbert transform is used for analyzing the
signal.

The time signal is subjected to Fourier transform to obtain the distributions of different frequency
components. After Fourier transform, the complex form is presented with real and imaginary parts,
which exhibit positive and negative frequencies. A negative frequency is obtained when the signal
passes the Fourier transform. Assuming that the number of sampling points of the time-domain signal
is 1,024, the theoretical Fourier transform resolution is 1,024 points, which can resolve a relatively
large number of sampling points. According to the Nyquist Theorem, the actual sampling frequency
band is not 11,024 Hz but 1512 Hz. Another component of the sampling points is the frequency of
imaging range sent back by the Fourier transform, that is, the negative frequency produced by the
signal after Fourier transform. Removal of the signal x(t) using the frequency of imaging range from
the Fourier transform x( f ) can form signal xa( f ), and inverse Fourier transform is applied on xa( f )
to convert the frequency-domain signal into the time-domain signal, which forms the analytic signal
xa(t). The negative frequency component in the Fourier spectrum of the time signal is removed, and
the signal x(t) is Fourier transformed to obtain the frequency-domain signal x( f ) of the signal x(t),
which varies in frequency intensities. The xa( f ) discriminant is established by removing the negative
frequency values (set to 0).

The xa( f ) discriminant can be applied to a state equation sgn(x) that varies with x regardless of
the value (as long as x is negative (-) and the value of all outputs is -1). By contrast, the value has a
positive sign (+) when the value of all outputs is +1; and the value of all outputs is 0 when the value is
0. Adjust the state equation sgn(x) by adding 1 to shift all discriminants up:

Multiply the original signal x( f ) by 2 ∗ u( f ) to remove the negative frequency components from the
Fourier spectrum:
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xa( f ) =


2 ∗ x( f ), f > 0
x( f ), f = 0
0, f < 0

(2.1)

Here, xa( f ) can be called an analytical function when the negative frequency components of the
Fourier spectrum are removed. However, the final goal is to return to the time sequence for calcula-
tion, because this study aimed to calculate the frequency that changes with time for any instant; thus,
xa( f ) must be converted into xa(t) through inverse Fourier transform by using the Hilbert transform
algorithm.

When the result of the inverse Fourier of xa(t) is obtained, it can be used directly to calculate the
instantaneous amplitude, phase, and frequency.

Instantaneous frequency is the derivative of instantaneous phase. Suppose the analytic signal xa(t) is
the signal at any real time; its return is actually a complex signal. The real part of a complex number is
similar to the original x(t), and an imaginary number is added to the back of each real part. Therefore,
difference between the xa(t) and x(t) is an additional imaginary component that can be used for angle
calculation. The angle is an arctangent function of the real and imaginary coefficients, resulting in the
phase of xa(t). Here, arg (x + ix̂) indicates that each sampling point integrated both real and imaginary
parts, where x represents a real number and (ix̂) represents an imaginary number. The coefficients of
x and ix̂ can be used with the arctangent function to calculate the phase for deriving the instantaneous
phase angle.

The angle position of phase φ is the angle of a fixed direction, and the vector length generated by
simple rotation does not change with respect to the origin. The rotation speed is the angle of a time-unit
rotating vector from the start point to the end point. The time interval is ∆t = t2 − t1, and the average
angular speed is defined as ω̄:

ω̄ =
∆ω

∆t
=

(φ2 − φ1)
t2 − t1

(2.2)

Similar to the linear rate, it is the first-order derivative of the linear displacement, where the angular
speed is the first-order derivative ω = φ′ of the angular phase. The calculated first-order reciprocal size
is the rotation speed, and its sign represents the rotational direction; positive denotes counterclockwise,
and negative denotes clockwise. The first-order derivative of the instantaneous phase is defined as the
instantaneous frequency ω(t)φ′(t), which is calculated in radians per second.

The symbol rate used in this study is 0.1s; that is, one symbol is transmitted every 0.1s When the
sampling rate of the received signals is 48 kHz (48,000 sampling points per s), 4,800 sampling points
represent one symbol every 0.1s. In the Hilbert-transformed signal model, an instantaneous frequency
value is calculated at each signal sampling point. Therefore, 4,800 instantaneous frequency values
can be calculated and stored in the vector ωi that represents a symbol at 0.1s. A large quantity of
data (i.e., 4,800 data) is not required to decode a signal. Therefore, this study’s method retrieves an
average value out of every 480 data points, and the vector average variance extracted (AVE) contains
10 instantaneous phase data points, for which AVE is used for decoding.

AVE j =

∑N
i=1 f requN j+i

N
(2.3)
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The method for determining the correct symbol is as follows: each frequency f (as shown in Table
2) corresponds to a different symbol M, and the range of the instantaneous frequency value of the
decoded symbol should fall within ± 15 Hz of the corresponding frequency. By contrast, the output
is zero if the instantaneous frequency does not exist in this range. The decoded results are stored in
T = {x1, x2, . . . , xn} to calculate the difference.

Algorithm 1: Algorithm for decoding received signal
input : AVE
output: T

1 for i← 1 to #(AVE) do
2 counti ← 0

3 for i← 1 to #(AVE) do
4 counti ← counti + 1
5 if counti == 10 then
6 for k ← 1 to #(AVE) do
7 for j← 1 to #(S ymbol) do
8 y← S ymbol( j)
9 if y − 15 ≤ AVE(k) ≤ y + 15 then

10 Ti ← 1

11 else
12 Ti ← 0

C. Comparison of the two symbol sequences

The symbol sequence T is obtained when the signal x(t) is decoded by the authentication server.
Subsequently, the difference between the transmitted symbol sequence S and received symbol se-
quence T (a total of a nonzero vector values) and the sum of the error are calculated to further determine
the BER.

D. Calculation of BER

This study determines whether the authenticator and user being authenticated exist in the same
environment by calculating and comparing the transmitted and received decoded symbol sequences of
the audio signal. Therefore, calculation of BER is required.

E. Defining threshold values

Ambient authentication contains many fluctuations due to the varying conditions of each physical
environment, and a signal may be affected even if it is received from less than 0.5m away. Therefore,
defining the threshold value is vital for the identification result. Before the authentication, training
data of the relationship between the distance and BER in the authenticator server are established, and
a critical point that suits the environment is set.
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The system uses the following two equations to obtain the threshold value and numerical average
of 100 samples. Therefore, during authentication, a BER that is lower than the threshold value passes
the authentication, otherwise it fails.

S core←
100∑
j=1

{ber1, ber2, . . . , berk} (2.4)

threshold ←
S core
#(Ber)

(2.5)

2.1.2. Authentication stage

The authentication stage is divided into five steps: (1) transmission of the encoded signal symbol
sequence, (2) receipt of the decoded signal symbol sequence, (3) comparison of the two symbol se-
quences, (4) calculation of the BER, and (5) scoring. Because steps 1 to 4 are similar to the steps in
the proximity analysis model, only step 5 is described as follows.

In step 5, the decoded audio signal received by the authenticator and user being authenticated is sent
back to the authentication server. The output is subjected to the authentication symbol sequence Xi, and
BER analysis is performed for the symbol sequence Xi, and original symbol sequence S i stored in the
authentication server. Authentication is successful if the value is below the threshold value; otherwise,
it fails.

3. Experiment

This section is divided into five parts to introduce the experiment design and tools used in the exper-
iment. Section 3.1 provides the experimental scenario and introduces the three experimental structures
of this study, including the use of several devices and amplitudes, testing of various environments and
distances, transmission of multiple symbols, and execution of one-way and two-way transmission and
reception. Section 3.2 describes the encoding method for transmitting audio. Section 3.3 explains that
the signal must be accurately synchronized before decoding; otherwise, it may cause decoding errors
because symbols exist at each time point after audio encoding. Finally, section 3.4 proposes a method
for analyzing ambient noise. The transmission speed of the transmitted audio in this study was 10
bps, and a frequency was transmitted every 0.1 s. The frequency range was 16–19 kHz, and the audio
was transmitted with different amplitudes. The user being authenticated transmits the encoded audio
signal from the authenticator back to the authentication server, and the authentication server analyzes
the BER of the returned audio file from the user’s mobile device to determine whether the authenticator
and user being authenticated are within the same environment. The authentication is successful if the
audio is within the same range; otherwise, it fails. The range was set to 0.5m in this study.

3.1. Experimental scenario

This study conducted three experiments:

Experiment 1 For audio amplitude and distance measurement, two devices were used as the authenti-
cator and the user being authenticated. A total of 20 frequencies were transmitted each time, and
eight distances were measured: 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, and 3 m. A total of five amplitudes
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were used: 1, 0.5, 0.1, 0.01, and 0.05. Each distance was tested for each of five amplitudes, with
10 transmissions and receptions per test.

Experiment 2 One-way reception measurement also employed two devices as the authenticator and
the user being authenticated; experiments were conducted in two environments. Twenty frequen-
cies were transmitted each time, and five distances were measured: 0.1, 0.5, 1, 2, and 3 m. A
total of three amplitudes were used: 1, 0.1, 0.05. Each distance was tested with each of the three
amplitudes, with 10 transmissions and receptions per test.

Experiment 3 Two-way reception measurement also used two devices were used as the authenticator
and the user being authenticated; automatic transmission and reception applications were de-
signed, and experiments were conducted in three environments. Fifty frequencies were randomly
transmitted, and three distances were measured: 0.5, 1, and 2 m. Only one amplitude was used: 1.
The same amplitude was used for 100 measurements in different environments at each distance.

Table 3 shows the scenario.

Table 3. Experimental ambient settings.

Features Experiment #1 Experiment #2 Experiment #3

One-way or Two-way One-way One-way Two-way
# of Ambience Measured 1 2 3
# of Distance Measured 8 5 3

# of Amplitude Measured 5 3 1
Fixed / Random Transmission Fixed Fixed Random

3.2. Audio encoding

This study used a frequency of 16 kHz to 19 kHz to encode secret messages through sound waves.
Two frequency modulation methods were considered for use. The first method used two frequencies
f 1 and f 2 for frequency modulation, and the sines of the waves of f 1 and f 2 are 1 and 0, respectively.
Furthermore, American Standard Code for Information Interchange (ASCII) encoding was transmit-
ted at 100 bps, and five symbols were transmitted (Figure 3). The experiment demonstrated that the
transmission result error rate was high, and the available space for symbol transmission was relatively
small. Therefore, this study applied the second method.

3.3. Signal synchronization

The audio signals at the authenticator and user being authenticated must be synchronized for com-
parison to investigate whether both authentication ends are in the same environment. The study method
uses a search for partial cross-correlation to process signal synchronization problems. Because of filter-
ing and other operational delays, offset occurs between the received and transmitted bits. The amount
of offset must be determined before comparing two bit sequences for error checking, and one method
of doing this is by correlating two sequences and searching for the correlation peak value. The nota-
tions are shown in Table 4. Assume that the transmitted signal bits are stored in vector Tx, and the
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Figure 3. Encoding using various frequencies.

received bits are stored in vector Rx. The received vector should contain more bits than the transmitted
vector because the receiver produces a meaningless output during delays in transmission, filling, and
flushing processes.

Table 4. Notations.

Symbols Definitions

Tx Time series of the transmitted signal, Tx = {tx1 , tx2 , tx3 , . . . , txn}

Rx Time series of the received signal, Rx = {rx1 , rx2 , rx3 , . . . , rxn}

CRT Calculate the time-series correlation of Tx and Rx by using the partial autocorrelation
function CRT = {c1, c2, c3, . . . , cn}

sb Marked as the maximum value m of CRT , which is the starting position in the time series
for the delayed received signal sb = CRT [m]

err Difference vector between the transmitted and received signals
err = {e1, e2, e3, . . . , en}

eb Sum of the difference vectors, which is the measurement for signal errors;
eb =

∑n
k=1 err[k]

ber Calculation of signal error rate, which is the probability of a signal error
ber = eb

#(Tx)

The possible offset range is between 0 and #(Rx) − #(Tx) − 1 if the length of the transmitted and
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received bit vector are #(Tx) and #(Rx), respectively. The offset can be identified by performing a partial
autocorrelation function for the two vectors. Algorithm 2 define the partial autocorrelation function.

Algorithm 2: Algorithm of the partial autocorrelation function.
input : Rx, Tx

output: CRT

1 while Rx > TX do
2 for i← 1 to #(Rx) − #(Tx) − 1 do
3 CRT (i)← Txi ∗ Rxi]

The results showed that vector CRT is the partial autocorrelation of the transmitted and received
bits, with 0 to #(Rx) − #(Tx) − 1 as the possible delay range. Let m be the position of the maximum
CRT value, where sb = CRT [m]. After identifying the offset between the transmitted and received bit
vectors, the signal errors can be calculated. For signals with 0 and 1, a simple difference can cause
error. When signal error occurs, the difference is ±1; otherwise, it is 0. Calculating the error vector
err from the transmitted bit vector Tx and received bit vector Rx that contains an sb offset uses the
following equation:

err = Tx − Rx (3.1)

The error vector err is a nonzero element with n signal errors. The total number of nonzero elements
can be calculated by the total number of bit errors eb:

eb =

n∑
k=1

err[k] (3.2)

When performing the calculation of the BER, the transmitted and received signals are synchronized
to determined how many errors are in the received bits. The BER is calculated by dividing the number
of bit errors by the total number of bits in the transmitted signal. Calculation of the BER is as follows,
where eb is the total number of bit errors, and #(Tx) is the total number of bits transmitted:

ber =
eb

#(Tx)
(3.3)

3.4. Analysis of ambient noise

In reality, noise is randomly normally distributed; this is different from a simulated method. This
study used a signal that had been mixed with noise at the receiving end, α(t) + Ne, with Ne as the
background noise subtracted by the original signal s(t) at the transmitting end to obtain the ambient
noise value. Before the signal at the transmitting end is subtracted from the signal at the receiving end,
the original signal at the transmitting end and the signal containing the noise at the receiving end must
first be normalized, with d representing the channel attenuation.

4. Experimental results

In the experiment we designed, we chose three different environments (Room A, Room B, and
Room C). The three rooms contains the two devices (D1 and D2) we are going to authenticate are
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placed in the same environment. In each of the three rooms, the background noise is different.
This section analyzes the experimental results of this study, which were mainly divided into three

parts. Section 4.1 describes the measurement of audio amplitude and distance. This study tested the
effects of five amplitudes at five distances during audio reception. Section 4.2 discusses the investi-
gation of the one-way reception measurement of the authenticator and user being authenticated. This
study tested the effects of two environments and three amplitudes at five distances during audio re-
ception. Section 4.3 explores the two-way reception measurement of the authenticator and user being
authenticated. This study tested the effects of three environments and one amplitude at three distances
during audio reception. Note that this experiment differed from the ones described in Sections 4.1 and
4.2 in that both D1 and D2 transmitted and received, and each transmitted audio signal was randomly
generated.

4.1. Audio amplitude and distance measurement

In the past, ambient audio authentication could not resist attackers from the same environment.
Therefore, this study proposed to use an audio signal transmission channel that is undetectable by the
human ear for MFA and to improve the recognition. Although it is impossible to completely guard
against attackers from the same environment, narrowing the range of attacks can enhance security.
First, the transmission range of the audio signal must be identified. Because different amplitudes
affect the audio signal transmission range, the first experiment tested the audio signals with different
amplitudes at different distances. The experimental results showed that when the distance was 0.5
m, the received signal was stable when the amplitude was 1. When the amplitude was not 1, the
BER increased as the amplitude of the audio signal decreased. At 1-m range, the BER was increasing
significantly because of audio attenuation, indicating that the BER increased as the distance increased.

4.2. One-way reception measurement of the authenticator and user being authenticated

Although the audio transmission range was identified in previous experiment, the experiment was
tested only in a single environment. Therefore, this study tested two different environments to confirm
the feasibility of the method proposed. The experimental results of the previous experiment showed
that resolution of the audio signal did not differ much when the amplitudes were 1 and 0.5. In this sec-
tion, the audio signal with an amplitude of 1 was selected. When the amplitude of the audio signal was
0.01, performance of the audio transmission was notably lower than with other amplitudes. Therefore,
an audio signal with an amplitude of 0.01 was not selected for this experiment. Figure 4 presents the
results of audio signals with three amplitudes and five distances measured in Room A. (1) When the
amplitude was 1 with distances of 0.1, 0.5, 1, 2, and 3 m, the BERs were 0, 0.1, 0.2, 0.3, and 0.4,
respectively. (2) When the amplitude was 0.1 with distances of 0.1, 0.5, 1, 2, and 3 m, the BERs were
0.1, 0.15, 0.25, 0.4, and 0.6, respectively. (3) When the amplitude was 0.05 with distances of 0.1, 0.5,
1, 2, and 3 m, the BERs were 0.1, 0.2, 0.4, 0.7, and 0.9, respectively. Figure 5 presents the results
of audio signals with three amplitudes at five distances measured in Room B. (1) When the amplitude
was 1 with distances of 0.1, 0.5, 1, 2, and 3 m, the BERs were 0, 0, 0.05, 0.25, and 0.4, respectively.
(2) When the amplitude was 0.1 with distances of 0.1, 0.5, 1, 2, and 3 m, the BERs were 0, 0.15, 0.4,
0.6, and 0.9, respectively. (3) When the amplitude was 0.05 with distances of 0.1, 0.5, 1, 2, and 3 m,
the BERs were 0, 0.2, 0.5, 0.7, and 0.8, respectively.
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Figure 4. Results of signal transmission and reception in Room A.

Figure 5. Results of signal transmission and reception in Room B.
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4.3. Two-way reception measurement of the authenticator and user being authenticated

Because the method proposed in this study is two-way verification, both the authenticator and user
being authenticated must perform a challenge-response authentication. Therefore, this experiment was
conducted with two devices, D1 and D2, and a random signal was transmitted each time. Different
noises exist in different physical states, and errors may occur even if the distance is only 0.5 m. There-
fore, the ambient authentication sets a special threshold value through the proximity analysis model to
prevent false negatives. Performance of the microphones and speakers of D1 and D2 may vary, and this
may result in different error rates. This experiment investigated the false negatives in the measurement
results of different devices in the same environment and the BERs for the same distances between D1
and D2 in different environments. Different environments produced disparate error rates; therefore, the
receiving environment of a user being authenticated cannot be simulated even if the attacker obtains the
original transmitted signals. This study divided the experiment into two parts for analysis: (1) D1 and
D2 at different distances in the same environment and (2) D1 and D2 at the same distance in different
environments.

4.3.1. Experimental results of D1 and D2 at different distances in the same environment
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Figure 6. Test result of D1 and D2 at different distances and difference environments.

Figures 6 shows the transmission and reception results of D1 and D2 in different Room A, Room B,
and Room C, respectively. Table 5 shows the experimental results of 50 randomly transmitted symbol
sequences. At the distances of 0.5 and 1 m, the SERs of D1 were 0.3, 1.25, and 3.58 and 7.95, 13.16,
and 22.84, respectively. At 0.5 and 1 m, the SERs of D2 were 0.72, 4.36, and 6.34 and 7.56, 11.68, and
23.56, respectively. This experiment demonstrated that the SER was 0.2 at the transmission range of
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0.5m. The differences of SERs at 0.5 and 1m were higher compared with the fixed transmitted symbol
sequences of the two previous experiments.

Table 5. Experimental results of D1 and D2 at different distances in the same environment.

Devices D1 D2

Distance (m) 0.5m 1m 2m 0.5m 1m 2m
Symbol error rate of Room A 0.3% 7.95% 0.72% 0.72% 5.57% 10.12%
Symbol error rate of Room B 1.25% 13.16% 4.36% 4.36 % 11.68% 45.18%
Symbol error rate of Room C 3.58% 22.84% 45.82% 6.34% 23.56% 28.62%

Table 6 shows the false negative rate (FNR) and false acceptance rate (FAR) of D1 and D2. In
Room A, the SER was 0.02 at 0.5 m, which is the threshold value selected in this study. When the SER
was greater than 0.02, the system refused the login if the authenticator was ≥ 0.5m from the user being
authenticated. The experimental results of D1 and D2 provided false negative rates of 0.02 and 0.07,
respectively, and the FARs were 0 and 0.12.

Table 6. False negative rates and false acceptance rates of D1 and D2.

Room D1 FNR D1 FAR D2 FNR D2 FAR Threshold value

Room A 0.02 0 0.07 0.12 2
Room B 0 0.22 0.17 0.2 5
Room C 0.01 0 0.12 0.18 8

In Room B, the SER was 0.05 at 0.5 m, which was selected as the threshold value in this study.
When the SER was greater than 0.05, the system refused the login if the authenticator was greater
than 0.5 m from the user being authenticated. D1 and D2 exhibited false negative rates of 0 and 0.17,
respectively, and FARs of 0.22 and 0.2. In Room C, the SER was 0.08 within 0.5 m, which was selected
as the threshold value in this study. When the SER was greater than 0.08, the system refused the login if
the authenticator was greater than 0.5 m from the user being authenticated. D1 and D2 resulted in false
negative rates of 0.01 and 0.12, respectively, and FARs of 0 and 0.18. The findings showed that the
BER was different for D1 and D2 in the same environment. Therefore, this study calculated the false
negative rates of D1 and D2 in dissimilar environments. Room C is a relatively noisy environment,
where the results showed that the false negative rate of D1 was satisfactory, but the false negative rate
of D2 was slightly higher (within 0.20). Overall, the method proposed in this study was highly feasible
and showed a low false negative rate.

4.3.2. Experimental results of D1 and D2 at the same distance in different environments

Figures 7 and 8 present the BERs of D1 and D2, respectively, at same distance in three different
environments. Values on the graph are the average values of BERs after 100 tests for D1 and D2 in
each environment at each distance. The experimental results demonstrated that the BERs of D1 and
D2 varied in different environments for the same distance. This was caused by the different noises of
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the unique environments. This finding confirms that a user’s environment cannot be fully simulated,
even if the attacker taps into different environments.

DeviceA BER

Figure 7. Receiving conditions of D1 in three different environments.

DeviceB BER

Figure 8. Receiving conditions of D2 in three different environments.
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4.4. Comparison of authentication range

In this section, we compare the authentication range of varios methods, as shown in Table 7. The
experimental authentication range proposed by Choi et al. [21] was 2 m. In Varshavsky et al. [27]’s
method, it was unable to defend against attackers with more than 3 m; Our methods used the distance
of 0.5 m, a shorter transmission distance and authentication range than used in related studies, as the
threshold value, which improved the security of the authentication. Table 7 compares the FAR of the
methods proposed in relevant studies.

Table 7. Comparison of authentication range of various methods.

Methods Authentication Range

This study 0.5 m
Schurmann et al. [29] Unable to distinguish
Karapanos et al. [35] Unable to distinguish

Choi et al. [21] 2 m
Varshavsky et al. [27] 3 m

Hien et al. [31] Unable to distinguish

)

(

Figure 9. Comparison of false acceptance rates.
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Figure 9 shows the false acceptance rate of our method and the others. The method proposed by
Schurmann et al. [29] performs authentication within the same environment and establishes similar
environmental modes for various environments. The median of the bit similarity was only 0.05 in their
experiments, indicating that attackers could simulate the environment of the user being authenticated
for a relay attack. The method proposed by Karapanos et al. [35] achieved an FAR of 1 when the users
were within the same city sharing the same Internet and TV service providers. In Choi et al. [21]’s
method, the FARs are 0.5%, 0.213%, and 0.096% when the attacker was located at distances of 2m,
5m, and 10m, respectively. In Hien et al. [31] ’s method, the FARs of various sensor models (WiFi,
Bluetooth, GPS, and audio) reached 4.76% when the time cost was 10s; the FARs increased to 7.14%
when the time cost was shortened to 5 s. The method proposed by Varshavsky et al. [27] exhibited
an FAR of 0.08 when the attacker was located within 3 m of the authenticator. The method proposed
by this study committed no false acceptance when the range was more than 3 m; this is effective for
narrowing the authentication range to improve security relative to related studies .

5. Conclusion

This study proposed a multi-factor authentication mechanism based on ambient audio. The authen-
tication server uses an audio channel that is not easily detectable by the human ear to establish a secure
channel for authentication. In the past, ambient audio authentication was unable to defend against
attackers from within the same environment. In addition, previous ambient audio authentication meth-
ods were unable to identify attackers with the same sound source even from different environments.
The method we propose can be used to authenticate whether a device is in the same environment as
another device. Even if there is a malicious attacker in the environment near the device we want to
authenticate, and the attacker can obtain the ambient features from the server, the method we propose
can also distinguish between users and attackers. Results shown the method proposed in this study can
detect an attacker from within 0.5 m, which is a low attack range and improves security over previous
methods.
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