Research article

Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces

  • Received: 01 September 2020 Accepted: 29 October 2020 Published: 05 November 2020
  • MSC : 39B52, 39B72, 39B82

  • The aim of this work is to introduce a new mixed type quadratic-additive functional equation, to obtain its general solution and to investigate Ulam stability by using Hyers method in random normed spaces.

    Citation: Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park. Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces[J]. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054

    Related Papers:

  • The aim of this work is to introduce a new mixed type quadratic-additive functional equation, to obtain its general solution and to investigate Ulam stability by using Hyers method in random normed spaces.


    加载中


    [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2 (1950), 64-66. doi: 10.2969/jmsj/00210064
    [2] H. Azadi Kenary, On the stability of a cubic functional equation in random normed spaces, J. Math. Ext., 4 (2009), 105-113.
    [3] H. Azadi Kenary, Stability of a Pexiderial functional equation in random normed spaces, Rend. Cire. Mat. Palermo, 60 (2011), 59-68.
    [4] H. Azadi Kenary, RNS-Approximately nonlinear additive functional equations, J. Math. Ext., 6 (2012), 11-20.
    [5] S. S. Chang, J. M. Rassias, R. Saadati, The stability of the cubic functional equation in intuitionistic random normed spaces, Appl. Math. Mech., 31 (2010), 21-26. doi: 10.1007/s10483-010-0103-6
    [6] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
    [7] M. E. Gordji, M. B. Savadkouhi, Stability of mixed type cubic and quartic functional equation in random normed spaces, J. Inequal. Appl., 2009 (2009), 1-9.
    [8] M. E. Gordji, M. B. Savadkouhi, C. Park, Quadratic-quartic functional equations in RN-spaces, J. Inequal. Appl., 2009 (2009), 1-14.
    [9] M. E. Gordji, J. M. Rassias, M. B. Savakohi, Approximation of the quadratic and cubic functional equations in RN-spaces, Eur. J. Pure Appl. Math., 2 (2009), 494-507.
    [10] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. doi: 10.1006/jmaa.1994.1211
    [11] V. Govindan, C. Park, S. Pinelas, S. Baskaran, Solution of a 3-D cubic functional equation and its stability, AIMS Math., 5 (2020), 1693-1705. doi: 10.3934/math.2020114
    [12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222
    [13] D. H. Hyers, G. Isac, T. M. Rassias, Stability of Functional Equations in Several Varables, Birkhäuser, Basel, 1998.
    [14] S. Jin, Y. Lee, On the stability of the functional equation deriving from quadratic and additive function in random normed spaces via fixed point method, J. Chungcheong Math. Soc., 25 (2012), 51-63. doi: 10.14403/jcms.2012.25.1.051
    [15] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
    [16] S. Jung, D. Popa, T. M. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 1-7. doi: 10.1007/s10898-013-0075-9
    [17] Y. Lee, S. Jung, Stability of an n-dimensional mixed type additive and quadratic functional equation in random normed spaces, J. Appl. Math., 2012 (2012), 1-15.
    [18] Y. Lee, S. Jung, T. M. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61.
    [19] D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572. doi: 10.1016/j.jmaa.2008.01.100
    [20] D. Mihet, R. Saadati, S. M. Vaezpour, The stability of the quartic functional equation in random normed spaces, Acta Appl. Math., 110 (2010), 797-803. doi: 10.1007/s10440-009-9476-7
    [21] M. Mohamadi, Y. Cho, C. Park, P. Vetro, R. Saadati, Random stability of an additive-quadratic functional equation, J. Inequal. Appl. , 2010 (2010), 1-18.
    [22] A. Najati, M. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415. doi: 10.1016/j.jmaa.2007.03.104
    [23] C. Park, K. Tamilvanan, G. Balasubramanian, B. Noori, A. Najati, On a functional equation that has the quadratic-multiplicative property, Open Math., 18 (2020), 837-845. doi: 10.1515/math-2020-0032
    [24] J. M. Rassias, R. Saadati, G. Sadeghi, J. Vahidi, On nonlinear stability in various random normed spaces, J. Inequal. Appl., 2011 (2011), 1-17. doi: 10.1186/1029-242X-2011-1
    [25] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [26] T. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 2003.
    [27] R. Saadati, M. Vaezpour, Y. Cho, A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces", J. Inequal. Appl., 2009 (2009), 1-6.
    [28] R. Saadati, M. M. Zohdi, S. M. Vaezpour, Nonlinear L-random stability of an ACQ functional equation, J. Inequal. Appl., 2011 (2011), 1-23. doi: 10.1186/1029-242X-2011-1
    [29] B. Schewizer, A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, 1983.
    [30] A. N. Serstnev, On the motion of a random normed space, Dokl. Akad. Nauk SSSR, 149 (1963), 280-283.
    [31] K. Tamilvanan, J. Lee, C. Park, Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces, AIMS Math., 5 (2020), 5993-6005. doi: 10.3934/math.2020383
    [32] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
    [33] J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues, Ulam-Hyers stabilities of fractional functional differential equations, AIMS Math., 5 (2020), 1346-1358. doi: 10.3934/math.2020092
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3390) PDF downloads(169) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog