Research article

Error estimates of variational discretization for semilinear parabolic optimal control problems

  • Received: 14 May 2020 Accepted: 09 July 2020 Published: 02 November 2020
  • MSC : 49J20, 65N30

  • In this paper, variational discretization directed against the optimal control problem governed by nonlinear parabolic equations with control constraints is studied. It is known that the a priori error estimates is $|||u-u_h|||_{L^\infty(J; L^2(\Omega))} = O(h+k)$ using backward Euler method for standard finite element. In this paper, the better result $|||u-u_h|||_{L^\infty(J; L^2(\Omega))} = O(h^2+k)$ is gained. Beyond that, we get a posteriori error estimates of residual type.

    Citation: Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Fei Huang. Error estimates of variational discretization for semilinear parabolic optimal control problems[J]. AIMS Mathematics, 2021, 6(1): 772-793. doi: 10.3934/math.2021047

    Related Papers:

  • In this paper, variational discretization directed against the optimal control problem governed by nonlinear parabolic equations with control constraints is studied. It is known that the a priori error estimates is $|||u-u_h|||_{L^\infty(J; L^2(\Omega))} = O(h+k)$ using backward Euler method for standard finite element. In this paper, the better result $|||u-u_h|||_{L^\infty(J; L^2(\Omega))} = O(h^2+k)$ is gained. Beyond that, we get a posteriori error estimates of residual type.


    加载中


    [1] P. Neittaanmaki, D. Tiba, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Dekker, New Nork, 1994.
    [2] D. Tiba, Lectures on The Optimal Control of Elliptic Equations, University of Jyvaskyla Press, Finland, 1995.
    [3] W. Liu, N. Yan, Adaptive Finite Element Methods For Optimal Control Governed by PDEs, Science Press, Beijing, 2008.
    [4] Y. Chen, Z. Lu, W. Liu, Numerical solution of partial differential equation, Science Press, Beijing, 2015.
    [5] T. Hou, C. Liu, Y. Yang, Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems, Comput. Math. Appl., 74 (2017), 714-726. doi: 10.1016/j.camwa.2017.05.021
    [6] P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amstterdam, 1978.
    [7] Y. Chen, N. Yi, W. Liu, A legendre galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254-2275. doi: 10.1137/070679703
    [8] Y. Chen, Y. Dai, Superconvergence for optimal control problems gonverned by semi-linear elliptic equations, J. Sci. Comput., 39 (2009), 206-221. doi: 10.1007/s10915-008-9258-9
    [9] X. Xing, Y. Chen, L-error estimates for general optimal control problem by mixed finite element methods, Int. J. Numer. Anal. Model., 5 (2008), 441-456.
    [10] R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41 (2002), 1321-1349. doi: 10.1137/S0363012901389342
    [11] P. Philip, Optimal control of partial differential equations, SIAM J. Control Optim., 50 (2012), 943-963. doi: 10.1137/100815037
    [12] W. Liu, N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93 (2003), 497-521. doi: 10.1007/s002110100380
    [13] B. I. Ananyev, A control problem for parabolic systems with incomplete information, Mathematical Optimization Theory and Operations Research, Springer, Cham, 2019.
    [14] H. Liu, N. Yan, Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations, J. Comput. Appl. Math., 209 (2007), 187-207. doi: 10.1016/j.cam.2006.10.083
    [15] W. Liu, N. Yan, A posteriori error estimates for control problems governed by Stokes equations, SIAM J. Numer. Anal., 40 (2002), 1850-1869. doi: 10.1137/S0036142901384009
    [16] J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
    [17] J. Lions, E. Magenes, Non Homogeneous Boundary Value Problems and Applications, Springer-verlag, Berlin, 1972.
    [18] H. Fu, H. Rui, A priori error estimates for optimal problems governed by transient advection-diffusion equations, J. Sci. Comput., 38 (2009), 290-315. doi: 10.1007/s10915-008-9224-6
    [19] W. Liu, N. Yan, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math., 15 (2001), 285-309. doi: 10.1023/A:1014239012739
    [20] R. Li, W. B. Liu, N. N. Yan, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comput., 33 (2007), 155-182. doi: 10.1007/s10915-007-9147-7
    [21] N. Yan, postriori error estimators of gradient recovery type for FEM of a model optimal control problem, Adv. Comp. Math., 19 (2003), 323-336. doi: 10.1023/A:1022800401298
    [22] Y. Tang, Y. Chen, Variational discretization for parabolic optimal control problems with control constraints, J. Systems Sci. Compl., 25 (2012), 880-895. doi: 10.1007/s11424-012-0279-y
    [23] M. Hinze, A variational discretization concept in cotrol constrained optimization: the linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45-63. doi: 10.1007/s10589-005-4559-5
    [24] M. Hinze, N. Yan, Z. Zhou, Variational discretization for optimal control governed by convection dominated diffusion equations, J. Comput. Math., 27 (2009), 237-253.
    [25] M. Huang, Numerical Methods for Evelution Equations, Secience Press, Beijing, 2004.
    [26] A. Kufner, O. John, S. Fuck, Function Spaces, Nordhoff, Leiden, The Netherlands, 1997.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2951) PDF downloads(129) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog