Research article

New results on complex conformable integral

  • Received: 07 August 2020 Accepted: 09 September 2020 Published: 27 September 2020
  • MSC : 26A33, 30Axx

  • A new theory of analytic functions has been recently introduced in the sense of conformable fractional derivative. In addition, the concept of fractional contour integral has also been developed. In this paper, we propose and prove some new results on complex fractional integration. First, we establish necessary and sufficient conditions for a continuous function to have antiderivative in the conformable sense. Finally, some of the well-known Cauchy′s integral theorems will also be the subject of the extension that we do in this paper.

    Citation: Francisco Martínez, Inmaculada Martínez, Mohammed K. A. Kaabar, Silvestre Paredes. New results on complex conformable integral[J]. AIMS Mathematics, 2020, 5(6): 7695-7710. doi: 10.3934/math.2020492

    Related Papers:

  • A new theory of analytic functions has been recently introduced in the sense of conformable fractional derivative. In addition, the concept of fractional contour integral has also been developed. In this paper, we propose and prove some new results on complex fractional integration. First, we establish necessary and sufficient conditions for a continuous function to have antiderivative in the conformable sense. Finally, some of the well-known Cauchy′s integral theorems will also be the subject of the extension that we do in this paper.



    加载中


    [1] J. W. Brown, R. Churchill, Complex Variable and Applications, Seventh Edition; McGraw-Hill Educations, 2003.
    [2] F. Martínez, I. Martínez, M. K. A. Kaabar, et al. Note on the conformable fractional derivatives and integrals of complex-valued functions of a real variable, IAENG Int. J. Appl. Math., 50 (2020), 609-615.
    [3] R. Khalil, M. Al Horani, A. Yousef, et al. New definition of fractional derivative. J. Comp. Appl. Math, 264 (2014), 65-70.
    [4] T. Abdeljawad, On conformable fractional calculus. J. Comp. Appl. Math., 279 (2015), 57-66.
    [5] O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D′Alambert approach. Progr. Fract. Differ. Appl., 2 (2016), 1-7.
    [6] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative. Open Math., 13 (2015), 57-63.
    [7] N. Yazici, U. Gözütok, Multivariable Conformable Fractional Calculus, arXiv preprint, arXiv: 1701.00616v1 [math.CA], 2017.
    [8] F. Martínez, I. Martínez, S. Paredes, Conformable Euler′s Theorem on homogeneous functions. Comput. Math. Methods, (2018), 1-11.
    [9] M. Al Horani, R. Khalil, Total fractional differential with applications to exact fractional differential equations, Int. J. Comput. Math., 95 (2018), 1444-1452. doi: 10.1080/00207160.2018.1438602
    [10] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109-137.
    [11] M. Horani, M. A. Hammad, R. Khalil, Variations of parameters for local fractional nonhomogeneous linear-differential equations, J. Math. Comput. Sci., 16 (2016), 147-153. doi: 10.22436/jmcs.016.02.03
    [12] R. Khalil, M. A. Al Horani, D. Anderson, Undetermined coefficients for local differential equations, J. Math. Comput. Sci., 16 (2016), 140-146. doi: 10.22436/jmcs.016.02.02
    [13] M. A. Hammad, R. Khalil, Abel′s formula and wronskian for conformable fractional differential equations, Int. J. Differential Equations Appl., 13 (2014), 177-183.
    [14] E. Ünal, A. Gökogak, Solution of conformable ordinary differential equations via differential transform method, Optik, 128 (2017), 264-273.
    [15] E. Ünal, A. Gökogak, I. Cumhur, The operator method for local fractional linear differential equations, Optik, 131 (2017), 986-993. doi: 10.1016/j.ijleo.2016.12.007
    [16] M. A. Hammad, R. Khalil, Legendre fractional differential equation and Legendre fractional polynomials, Int. J. Appl. Math. Res., 3 (2014), 214-219.
    [17] F. S. Silva, M. D. Moreira, M. A. Moret, Conformable Laplace transform fractional differential equations, Axioms, 7 (2018), 1-12.
    [18] A. Aphithana, S. K. Ntouyas, J. Tariboon, Forced oscillation of fractional differential equations via conformable derivatives with damping term. Boundary Value Problems, 47 (2019), 1-16.
    [19] Z. Al-Zhour, N. Al-Mutairi, F. Alrawajeh, et al. Series solutions for the Laguerre and Lane-Emden fractional differential equations in the sense of conformable fractional derivative. Alexandria Eng. J., 58 (2019), 1413-1420.
    [20] M. A. Hammad, H. Alzaareer, H. Al-Zoubi, et al. Fractional Gauss hypergeometric differential equation, J. Int. Math., 22 (2019), 1113-1121.
    [21] M. H. Uddin, M. A. Akbar, M. A Khan, et al. New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative, AIMS Math., 4 (2019), 199-214.
    [22] R. Khalil, M. Al Horani, A. Yousef, et al. Fractional analytic functions, Far East J. Math. Sci., 103 (2018), 113-123.
    [23] S. Uçar, N. Y. ózgür, Complex conformable derivative, Arabian J. Geosci., 12 (2019), 201.
    [24] R. Khalil, M. A. Al Horani, M. Abu Hammad, Geometric meaning of conformable derivative via fractional cords, J. Math. Comput. Sci., 19 (2019), 241-245.
    [25] M. Kaabar, Novel methods for solving the conformable wave equation, J. New Theory, 31 (2020), 56-85.
    [26] D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903-917. doi: 10.1007/s10092-017-0213-8
    [27] R. Pashaei, A. Pishkoo, M. S. Asgari, et al. Differentiable functions in complex plane, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 24 (2020), 379-389.
    [28] D. G. Zill, P. D. Shanada, A first course in complex analysis with applications, Jones and Bartlett Publishers, Inc, 2003.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3919) PDF downloads(170) Cited by(26)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog